Integrated Development of Controled Semi-Solid Casting Technology for Super-Cooled Ductile Iron

Author(s):  
Masahito Goka ◽  
Tatsuhito Kato ◽  
Manabu Kiuchi
2011 ◽  
Vol 308-310 ◽  
pp. 785-789 ◽  
Author(s):  
De Fang Liu ◽  
Jie Tao

With the development of lightweight vehicles, lightweight alloy materials has been increasingly used in automotive industry, automobile manufacturers are therefore looking for thinner and stronger materials so that the higher requirements has became a challenge to lightweight alloy die-casting technology. The paper summarized the applications of lightweight alloys in the automotive industry, and the new advances of lightweight alloys die-casting technology, such as low pressure die-casting, semi-solid die casting, oxygenation die-casting and the combination of different die-casting technologies, and discussed the development trend of the lightweight alloy die-casting technology.


2008 ◽  
Vol 141-143 ◽  
pp. 219-224 ◽  
Author(s):  
Antonio Forn ◽  
Sergi Menargues ◽  
Enric Martín ◽  
Josep A. Picas

This work is a contribution to improve the knowledge of components behavior produced by semi-solid processes particularly the Sub-Liquidus-Casting process. Die design was supported by using the Procast simulation program. The effect of the different variables of the process in structural integrity of the product has been described and analyzed. The components were produced using A356 alloy formed on a pilot plant with a 400 Ton THT press. The components study was made by RX, metallographic analysis and mechanical tests. The effects of T5 and T6 heat treatments were also studied.


2017 ◽  
Vol 898 ◽  
pp. 1254-1260
Author(s):  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Da Quan Li ◽  
Fan Zhang

Semi-solid die casting technology has great advantages at defects control and has been successfully used to produce high quality aluminum alloy components for several years. In this process, semi-solid metal with high apparent viscosity and low plunger velocity are used to avoid surface turbulence which is the main source of entrapped gas in conventional die casting processes. But, entrapped gas still has other sources, such as melting, pouring, surface flooding and confluence weld. Solution heat treatment is always used to strengthen semi-solid die castings. The entrapped gas leads to blister defects, which directly decreases the acceptance rate of semi-solid die castings. So, the entrapped gas is still a serious issue in semi-solid die casting process. We studied the floating behavior of entrapped gas bubble in semi-solid metal. Two floating models were established for gas bubbles with different sizes. These models were used to analyze the possibility of entrapped gas escaping from semi-solid metal in casting practice. The results showed that entrapped gas from feed billet could not escape from the semi-solid metal in the casting process of impeller, which was proved by experiment results. These results emphasized the importance of clean melt and semi-solid metal. Some advices were given at last for avoiding or removing the entrapped gas in semi-solid die casting process.


2006 ◽  
Vol 116-117 ◽  
pp. 354-357
Author(s):  
Lian Xi Hu ◽  
Yuan Yuan ◽  
Shou Jing Luo

A 20vol.%SiCw/ZK51A Mg-based composite was fabricated by the process of semi-solid extrusion directly following liquid infiltration. The microstructure and mechanical properties of the composite were investigated in comparison with its squeeze cast and hot extruded counterpart. The results showed that, by semi-solid extrusion, the SiC whiskers were well aligned and microstructure defects associated with the casting technology were eliminated. In addition, as compared with the conventional hot extrusion, the damage to the SiC whiskers during semi-solid extrusion was reduced significantly. Consequently, the composite fabricated by the semi-solid extrusion presented the best whisker reinforcing effect, with its elastic modulus, 0.2% offset yield strength, and ultimate tensile strength achieving 82.5GPa, 383.6MPa, and 431.8MPa respectively.


2014 ◽  
Vol 1044-1045 ◽  
pp. 75-78
Author(s):  
Yong Fei Wang ◽  
Sheng Dun Zhao ◽  
Chen Yang Zhang

Semi-solid die casting instead of conventional casting was used to produce bearing cage, Model of semi-solid die-casting was established based on power cut-off (PLCO) model and ProCast 2008 to simulate the effects of processing parameters on deformation process, through orthogonal experiment and analysis of defects, the reasonable technological parameters for using A356 aluminum alloy to finish semi-solid die casting of bearing cage were obtained: the pouring temperature was580°C, the preheating temperature of the mould was 200°C, and the injection velocity was 20 mm/s.


2008 ◽  
Vol 141-143 ◽  
pp. 487-492 ◽  
Author(s):  
Michael De Cicco ◽  
Lih Sheng Turng ◽  
Xiao Chun Li ◽  
John H. Perepezko

Ever since copious nucleation was shown to be an efficient, cost effective method for producing semi-solid slurry, many processes have been developed to take advantage of the cost savings inherent in this method of slurry production. Despite great advances in various aspects of semi-solid processing, the cost competitive nature of the industry, most noticeably the auto industry, has prevented a wider adoption of semi-solid casting technology. This research aims to realize a more industrial appealing process by combining the synergistic benefits of semi-solid casting technology with metal matrix nanocomposite (MMNC) technology, thus creating higher value products with superior properties cost-effectively. To do this, a process that produces a semi-solid slurry though the nucleation catalysis induced by nanoparticle additions as small as 1 wt. % to alloys is proposed and the results are presented in this paper. Examination of the potential for nano-scale inoculants to catalyze nucleation of solidification showed that despite their small sizes, inoculants on the scale of tens of nanometers are capable of catalyzing nucleation in the zinc and aluminum alloys studied. Employing the differential scanning calorimetry (DSC), differential thermal analysis (DTA), and droplet emulsion techniques with nanocomposite samples showed a significant reduction in undercooling owing to the homogeneous distribution of nanoparticles by ultrasonic mixing and the potency of those nanoparticles to catalyze nucleation. Comparison of undercoolings between different types of nanoparticles, such as silicon carbide (SiC), gamma and alpha alumina (Al2O3), and titanium carbide (TiC), to relative potencies predicted by minimum lattice disregistry showed a strong correlation. Results were also examined in light of free growth and nucleation controlled grain initiation. For nanoparticles predicted to be potent nucleation catalysts by lattice disregistry, the undercoolings observed fell into the free growth controlled grain initiation regime.


Sign in / Sign up

Export Citation Format

Share Document