The Analysis of Seepage Characteristics and Stability of Carbonaceous Mudstone Embankment Slope in Rainfall Condition

2012 ◽  
Vol 446-449 ◽  
pp. 1864-1868
Author(s):  
Ling Zeng ◽  
Hong Yuan Fu ◽  
Tao Li ◽  
Yan Qi Qin
Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1303
Author(s):  
Chenghua Shi ◽  
Xiaohe Sun ◽  
Shengli Liu ◽  
Chengyong Cao ◽  
Linghui Liu ◽  
...  

At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety.


Author(s):  
Juan An ◽  
Jibiao Geng ◽  
Huiling Yang ◽  
Hongli Song ◽  
Bin Wang

Seepage plays a key role in nutrient loss and easily occurs in widely-used contour ridge systems due to the ponding process. However, the characteristics of nutrient loss and its influential factors under seepage with rainfall condition in contour ridge systems are still unclear. In this study, 23 seepage and rainfall simulation experiments are arranged in an orthogonal rotatable central composite design to investigate the role of ridge height, row grade, and field slope on Nitrate (NO3−–N) and Orthophosphate (PO4+3–P) losses resulting from seepage in contour ridge systems. In total, three types of NO3−–N and PO4+3–P loss were observed according to erosion processes of inter-rill–headward, inter-rill–headward–contour failure, and inter-rill–headward–contour failure–rill. Our results demonstrated that second-order polynomial regression models were obtained to predict NO3−–N and PO4+3–P loss with the independent variables of ridge height, row grade, and field slope. Ridge height was the most important factor for nutrient loss, with a significantly positive effect and the greatest contribution (52.35–53.47%). The secondary factor of row grade exerted a significant and negative effect, and was with a contribution of 19.86–24.11% to nutrient loss. The interaction between ridge height and row grade revealed a significantly negative effect on NO3−–N loss, whereas interactions among the three factors did not significantly affect PO4+3–P loss. Field slope only significantly affected NO3−–N loss. The optimal design of a contour ridge system to control nutrient loss was obtained at ridge height of 8 cm, row grade of 2°, and field slope of 6.5°. This study provides a method to assess and model nutrient loss, and improves guidance to implement contour ridge systems in terms of nutrient loss control.


1975 ◽  
Vol 13 (1) ◽  
pp. 57-77
Author(s):  
R. Sakthivadivel ◽  
S. Thiruvengadachari

2014 ◽  
Vol 501-504 ◽  
pp. 8-11
Author(s):  
Jing Sheng Bian ◽  
Chao Sheng Bian ◽  
Zhi Ming Zhu

Rainfall is one of the most important factors of the slope stability. After the "5.12" earthquake, there are a large number of loose solid produced by earthquake on the mountain, which leads to the soils strength loss in the earthquake disaster zones. and induces landslides and collapses easily in the heavy rainfall condition. The soil parameters obtained from the tests, the scene investigation of the Erman mountain landslide of Han Yuan County, the new developed control of ArcGIS to obtain intuitive landslide warning graphs have been carried out. Results show that the picture of hazard grade is consistent with the actual situation of landslide on Erman mountain. It will provide a scientific way to analyze the influence of heavy rainfall on slope stability.


2011 ◽  
Vol 71-78 ◽  
pp. 1360-1365
Author(s):  
Jian Quan Ma ◽  
Guang Jie Li ◽  
Shi Bo Li ◽  
Pei Hua Xu

Take a typical cross-section of rockfill embankment slope in Yaan-Luku highway as the research object, reliability analysis is studied under the condition of water table of 840.85m, 851.50m, and loading condition of natural state and horizontal seismic acceleration of 0.2g, respectively. Raw data use Kolmogorov-Smirnov test (K-S test) to determine the distribution type of parametric variation. And the parameters were sampling with Latin hypercube sampling (LHS) method and Monte Carlo (MC) method, respectively, to obtain state function and determine safety factors and reliability indexes. A conclusion is drawn that the times of simulation based on LHS method were less than Monte Carlo method. Also the convergence of failure probability is better than the Monte Carlo method. The safety factor is greater than one and the failure probability has reached to 35.45% in condition of earthquake, which indicating that the instability of rockfill embankment slope is still possible.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anan Zhang ◽  
Jie Yang ◽  
Chuihui Ma ◽  
Lin Cheng ◽  
Liangcai Hu

Purpose The purpose of this paper is to form a numerical simulation method for permeability coefficient that can consider the characteristics of gravel gradation and further explore the effects of indoor test factors and gradation characteristics on the permeability coefficient of gravel. Design/methodology/approach The random point method is used to establish the polyhedral gravel particle model, the discrete element method (DEM) is used to construct the gravel permeability test sample with gradation characteristics and the finite element method is used to calculate the permeability coefficient to form a DEM-computational fluid dynamics combined method to simulate the gravel seepage characteristics. Then, verified by the indoor test results. Based on this method, the influence of sample size, treatment method of oversize particles and the content of fine particles on the permeability coefficient of gravel is studied. Findings For the gravel containing large particles, the larger size permeameter should be used as far as possible. When the permeameter size is limited, the equal weight substitution method is recommended for the treatment method of oversized particles. Compared with the porosity, the pore connectivity has a higher correlation with the permeability coefficient of the sample. Research limitations/implications Insufficient consideration of the movement of gravel particles in the seepage process is also an issue for further study. Originality/value The simulation method described in this paper is helpful for qualitative analysis, quantitative expression of pore size and makes up for the defect that the seepage characteristics in pores cannot be observed in laboratory tests.


Sign in / Sign up

Export Citation Format

Share Document