The Viscoelastic-Plastic Displacement Back Analysis of Rock Mass with Non-Stationary Parameters

2012 ◽  
Vol 455-456 ◽  
pp. 1538-1544
Author(s):  
Quan Sheng Liu ◽  
Jin Lan Li
2012 ◽  
Vol 455-456 ◽  
pp. 1538-1544 ◽  
Author(s):  
Quan Sheng Liu ◽  
Jin Lan Li

The FEM positive analysis is made using H-K non-stationary creep constitutive model in this paper, the finite element program for non-stationary viscoelastic-plastic displacement back analysis is compiled combining the non-stationary viscoelastic-plastic program with the complex shape optimization method, and the displacement back analysis of soft tunnel engineering is conducted. The result indicates that the viscous aging characteristics of rock mass can be reflected objectively if rock mass is regarded as non-stationary viscoelastic-plastic model, and the plastic zone development of surrounding rock can be predicted considering the plastic flow of rock mass and regarding the back analysis results as the calculation parameters.


2017 ◽  
Vol 14 (4) ◽  
pp. 939-948 ◽  
Author(s):  
Kwang-Song Kang ◽  
Nai-Lian Hu ◽  
Chung-Sik Sin ◽  
Song-Ho Rim ◽  
Eun-Cheol Han ◽  
...  

2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2002 ◽  
pp. 253-262 ◽  
Author(s):  
Kunifumi TAKEUCHI ◽  
Tomoyuki SHIMURA ◽  
Shinichi AKUTAGAWA ◽  
Shunsuke SAKURAI

2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Sign in / Sign up

Export Citation Format

Share Document