An Investigation of Acoustic Similarity on an Underwater Structure

2011 ◽  
Vol 105-107 ◽  
pp. 84-91
Author(s):  
Yong Fu Wang ◽  
Qi Dou Zhou ◽  
Zhi Yong Xie ◽  
Xiao Jun Lv

An acoustic similarity due to two geometrically similar structures which are vibrating in heavy flow, such as in water, is investigated. The acoustic similarity states that for two geometrically similar structures, if a group of dimensionless similarity numbers are constant, the dimensionless acoustic pressure coefficient keep constant at the corresponding acoustic field points for the two flow–loaded vibrating structure systems. Numerical simulations and experiment results are presented to validate the acoustic similarity. This acoustic similarity may be useful when a small structure is employed to investigate the acoustic performance of large scale structure.

Author(s):  
K. Shiohata ◽  
K. Nemoto ◽  
T. Iwatsubo

Abstract This paper presents a method for large-scale structural-acoustic analysis in which a cavity is divided into several acoustic fields, and a transfer-function method is used to solve the acoustics efficiently. By solving simultaneous equations using the Gaussian elimination method sequentially for each pair of neighboring acoustic sub-fields, the calculation time and memory requirements are reduced. Calculation accuracy is the same as when calculating the entire acoustic field without first dividing it. We created two kinds of closed acoustic models (cavity models) and carried out numerical simulations. The results showed that the proposed method is effective for large-scale structural-acoustic analysis.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 40
Author(s):  
Marc Röthlisberger ◽  
Marcel Schuck ◽  
Laurenz Kulmer ◽  
Johann W. Kolar

Acoustic levitation forces can be used to manipulate small objects and liquid without mechanical contact or contamination. To use acoustic levitation for contactless robotic grippers, automated insertion of objects into the acoustic pressure field is necessary. This work presents analytical models based on which concepts for the controlled insertion of objects are developed. Two prototypes of acoustic grippers are implemented and used to experimentally verify the lifting of objects into the acoustic field. Using standing acoustic waves and by dynamically adjusting the acoustic power, the lifting of high-density objects (>7 g/cm3) from acoustically transparent surfaces is demonstrated. Moreover, a combination of different acoustic traps is used to lift lower-density objects from acoustically reflective surfaces. The provided results open up new possibilities for the implementation of acoustic levitation in robotic grippers, which have the potential to be used in a variety of industrial applications.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Author(s):  
Yuhang Zhang ◽  
Jiejie Li ◽  
Hongjian Zhou ◽  
Yiqun Hu ◽  
Suhang Ding ◽  
...  

2018 ◽  
Vol 146 (4) ◽  
pp. 1023-1044 ◽  
Author(s):  
David J. Purnell ◽  
Daniel J. Kirshbaum

The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate [Formula: see text], the impinging horizontal moisture flux I, and the low-level static stability. Both WF and WS events exhibit large [Formula: see text] and I, and thus, heavy orographic precipitation, which is greatly enhanced in amplitude and areal extent by the seeder–feeder process. However, the stronger stability of the WF periods, particularly within the frontal inversion (even when it lies above crest level), causes their precipitation enhancement to weaken and shift upstream. In contrast, the small [Formula: see text] and I, larger static stability, and absence of stratiform feeder clouds in the nominally unsaturated and convective PF events yield much lighter time- and area-averaged precipitation. Modest enhancements still occur over the windward slopes due to the local development and invigoration of shallow convective showers.


Sign in / Sign up

Export Citation Format

Share Document