Research and Analysis of Dry Crushed Waste Tire Processing

2011 ◽  
Vol 109 ◽  
pp. 228-231 ◽  
Author(s):  
Jia Yang ◽  
Song Ge Yang ◽  
Li Jun Qiu

For the treatment of waste tires and waste tire reuse has become an important task in today's society. Waste tire processing methods are: restructuring the use of the prototype. Energy use of waste tires as fuel will use high-temperature heating with thermal decomposition of waste tires, to promote its decomposition into oil, combustible gas, carbon. Scrap tire retreading. Powder production and other means. By mechanical means will be used after the tire tread and some other parts of the split will be obtained after crushing the powder material is powder. Currently the main mode of production has powder dry grinding, cryogenic grinding and wet grinding method. Different methods produce different particle size range of powder, powder surface morphology is also different. Dry grinding, wet grinding and cryogenic grinding of the legal system into a powder particle size in the range of 0.3 mm ~ 1.5 mm, 0.075 mm ~ 0.3 mm and 0.075 mm or less. Dry grinding method because of his production and processing simple process has been widely used in powder production process. For dry grinding process and mechanical work made for the research and analysis.

2017 ◽  
Vol 727 ◽  
pp. 343-346
Author(s):  
Xiao Lei Ren ◽  
Xiao Gang Wang ◽  
Zhi Hui Pei ◽  
Zi Min Fan ◽  
Li Rong Deng ◽  
...  

In this research, the effects of main parameters such as speed of agitator, concentration and redium change ratio on the grinding effect were studied by the method of wet-grinding. The powder was characterized and analyzed by means of particle size analysis and scanning electron microscope. The results show that the mechanical grinding method can effectively prepare micro-nanosilicon carbide powder with particle size of about 130nm, the optimum parameter is the rotational speed 1000r/min, the concentration is 30%, the medium change ratio is 75%.


2021 ◽  
Vol 328 ◽  
pp. 07011
Author(s):  
Nizar Amir ◽  
Makhfud Efendy ◽  
Rachmad Hidayat ◽  
Misri Gozan

Studies were conducted on the salt quality, such as NaCl percent and whiteness achieved by dry and wet grinding methods. Crude solar salt is carefully collected from traditional solar salt ponds to ensure the uniformity of the sample. Several salt processing methods were applied in this research, such as washing, grinding, and dewatering by centrifuge hydro extractor and drying. The effect of reducing salt particle size to 0.6 and 0.25 mm was also studied. The dry grinding method is conducted before the washing stage, while the wet grinding method is applied after the washing stage. Both dry and wet grinding methods provide high-quality salt products, indicating high NaCl percent and whiteness. The dry grinding method produces higher NaCl percent and whiteness than the wet grinding method. However, the wet grinding method was better in water management and equipment durability with loss of salt losses during the washing stage. Finally, both grinding methods have advantages and disadvantages, so for developing the salt processing industry, both methods should be correctly chosen and match product output requirements.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 1694-1700
Author(s):  
Zhi Wei Li ◽  
Kai Yong Jiang ◽  
Fei Wang ◽  
Ji Liang Zhang

This paper mainly introduces the mechanism of microwave heating: electric conduction loss, eddy current loss and arc discharge. The microwave heating behavior of 316 stainless steel powder body which made by gel casting was investigated in the paper. Experiments on different microwave power, powder particle size, and the content of auxiliary heating material showed that the smaller the powder particle size, the larger microwave power and auxiliary heating materials help 316 stainless steel body for sintering.


Author(s):  
Yun Bai ◽  
Grady Wagner ◽  
Christopher B. Williams

The binder jetting additive manufacturing (AM) process provides an economical and scalable means of fabricating complex parts from a wide variety of materials. While it is often used to fabricate metal parts, it is typically challenging to fabricate full density parts without large degree of sintering shrinkage. This can be attributed to the inherently low green density and the constraint on powder particle size imposed by challenges in recoating fine powders. To address this issue, the authors explored the use of bimodal powder mixtures in the context of binder jetting of copper. A variety of bimodal powder mixtures of various particle diameters and mixing ratios were printed and sintered to study the impact of bimodal mixtures on the parts' density and shrinkage. It was discovered that, compared to parts printed with monosized fine powders, the use of bimodal powder mixtures improves the powder's packing density (8.2%) and flowability (10.5%), and increases the sintered density (4.0%) while also reducing the sintering shrinkage (6.4%).


1984 ◽  
Vol 40 ◽  
Author(s):  
J. B. Blum ◽  
W. R. Cannon

AbstractFor the past two years we have been investigating the tape casting of BaTiO3 Specifically we have been interested in developing a useful tape casting formulation and procedure and in studying the effects of powder particle size distribution and dispersion processes on the forming of BaTiO3 tapes.The formulation we have developed is non-aqueous. An MEKethanol mixture is the solvent and an acrylic binder is used. Two dispersants are being used, a phosphate ester and Menhaden fish oil. Ultrasonic dispersion was found to be effective in breaking up weak powder agglomerates. We have found it important to add the dispersant before adding other organic components to obtain the best dispersion and strongest tapes. The drying method is also important to tape strength. The strongest tapes resulted when the tape was removed from the glass plate soon after casting. We have also demonstrated that for forming purposes a wide particle size distribution is preferred.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2014 ◽  
Vol 46 (3) ◽  
pp. 365-375
Author(s):  
N. Labus ◽  
S. Mentus ◽  
Z.Z. Djuric ◽  
M.V. Nikolic

The influence of air and nitrogen atmosphere during heating on TiO2 nano and micro sized powders as well as sintered polycrystalline specimens was analyzed. Sintering of TiO2 nano and micro powders in air atmosphere was monitored in a dilatometer. Non compacted nano and micro powders were analyzed separately in air and nitrogen atmospheres during heating using thermo gravimetric (TG) and differential thermal analysis (DTA). The anatase to rutile phase transition temperature interval is influenced by the powder particle size and atmosphere change. At lower temperatures for nano TiO2 powder a second order phase transition was detected by both thermal techniques. Polycrystalline specimens obtained by sintering from nano powders were reheated in the dilatometer in nitrogen and air atmosphere, and their shrinkage is found to be different. Powder particle size influence, as well as the air and nitrogen atmosphere influence was discussed.


2013 ◽  
Vol 45 (2) ◽  
pp. 209-221
Author(s):  
N. Labus ◽  
J. Krstic ◽  
S. Markovic ◽  
D. Vasiljevic-Radovic ◽  
M.V. Nikolic ◽  
...  

ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterized. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.


Sign in / Sign up

Export Citation Format

Share Document