Dynamic Simulation and Test for the Valve Train Dynamics

2011 ◽  
Vol 117-119 ◽  
pp. 15-19 ◽  
Author(s):  
Cai Yun Guan ◽  
You Ming Chen ◽  
Wen Jie Qin

This paper presents the development of a dynamic model of the valve train of one engine. During the parameter determination of the model, finite element method is used to calculate the contact stiffness of the cam-follower . The simulation results of the model are compared with measured data of the valve train at same speed. Excellent quantitative agreement is found between the numerical and experimental results and the validity of the dynamic model can be verified.

Author(s):  
A. Turturro ◽  
R. Rahmani ◽  
H. Rahnejat ◽  
C. Delprete ◽  
L. Magro

The tribology of cam-roller follower conjunction is highly dependent on the engine type and working conditions. The interface experiences transient conditions due to variations in contact geometry and kinematics, as well as loading. These lead to instantaneous and capricious behavior of the lubricant through the contact, which determines the regime of lubrication. The resulting frictional characteristics are affected by the shear of the lubricant film and the interaction of rough surfaces themselves. Thus, specific analysis is required for any intended new engine configuration. Therefore, a tribo-dynamic model, combining valve train dynamics, contact kinematics and tribological analysis is required. An important issue is to develop a simple yet reliable and representative model to address the above mentioned pertinent issues. This would make for rapid scenario-building simulations which are critical in industrial design time-scales. The current model has been developed in response to the above mentioned requirements. A multi-body dynamic model for the valve train system based on the key design parameters is developed and integrated with an EHL tribological model for the cam-follower contact. To keep the model simple and easy to use and to avoid time-consuming computations, the analytical EHL model makes use of Grubin’s oil film thickness equation. Viscous and boundary contributions to friction are obtained as these account for the losses which adversely affect the engine fuel efficiency.


2018 ◽  
pp. 76-84
Author(s):  
K. V. Sorokin ◽  
E. A. Sunarchina

Improvement of orbits precision is one of the most important tasks of space surveillance catalogue maintenance. The solution of this problem is directly related to an adequate consideration of the errors of the coordinate information from the measuring instruments. The article consideresd a new method for estimating the precision of measuring instruments on the catalog orbits. To carry out such analysis, in PJSC «VIMPEL» special technological program was created. Main results of a study of radar errors with orbits of space surveillance catalogue was presented. Also, the results were compared with data of measuring instrument's calibration software complex. This software complex provides determination of satellite's position with errors less than 10 m. A new dynamic model of measuring instrument errors is proposed.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


2012 ◽  
Vol 524-527 ◽  
pp. 598-603
Author(s):  
Nian Jie Ma ◽  
Zhi Qiang Zhao ◽  
Hua Zhao ◽  
Li Shuai Jiang

In order to solve the serious damage and repeat revision problem of high stress soft rock roadway in deep -950 level of Tangshan coal mine, based on the theory of the maximum stress level, together with the actual measurement of geostress and the laboratory mechanical parameters of rock-core and computer numerical simulation, the high strength combined support technology and supporting parameters are determined and the engineering test has been done. The engineering test results show that the parameter determination of high strength combined support technology, which based on the actual measurement of geostress, can effective solve the support issue of high stress soft rock roadway and provide useful experience for similar engineering problems.


Sign in / Sign up

Export Citation Format

Share Document