Impact Damage Behavior of Composite Stiffened Plates

2011 ◽  
Vol 117-119 ◽  
pp. 954-957
Author(s):  
Li Yan ◽  
Xue Feng An ◽  
Chen Qian Zhang ◽  
Xiao Su Yi

Damage behavior of composite stiffened plates of structure I and structure II at different positions and under different impact energy subjected to low-velocity impact testing was studied in this paper. Visual observation and ultrasonic C-scanning were also employed to inspect the damage size. The results showed that damage behavior of composite stiffened plates was not only related to damage behavior of laminates, but also related to damage between stringer and laminate and damage of stringer itself. It was found that the mechanism of absorbing energy varies with the impact position, as well as the damage behavior. When the impact position was near stringer, partial energy was absorbed by stringer to make stringer and laminate disengage and damage area of laminates was smaller. Damage behavior of composite stiffened plates varies with the structure. Damage area of samples of structure II was smaller than that of samples of structure I. It was estimated preliminarily that design of structure II was better than that of structure I.

2006 ◽  
Vol 326-328 ◽  
pp. 1793-1796
Author(s):  
Ki Weon Kang ◽  
Seung Yong Yang ◽  
J.H. Kim ◽  
Jung Kyu Kim ◽  
Heung Seob Kim ◽  
...  

This paper deals with the damage behavior of glass/epoxy composite laminates subjected to low-velocity impact at various temperatures. For this goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: +20°C, -10°C and -40°C. And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration of the laminates, the impact resistance parameters were employed to evaluate damage resistance of glass/epoxy laminates. As results, it was found that the temperature changes affect the damage resistance capacity of glass/epoxy laminates.


2019 ◽  
Vol 809 ◽  
pp. 9-14
Author(s):  
Florian Schimmer ◽  
Sven Ladewig ◽  
Nicole Motsch ◽  
Joachim M. Hausmann ◽  
Ingo Ehrlich

This paper investigates the damage behavior of thermoset and thermoplastic fiber-reinforced composites. The specimens were subjected to low-velocity impacts (LVI) to produce barely visible impact damages (BVID). To compare the dependency of the matrix system and the laminate lay-up on the impact damage, four test series were set up. Therefore, laminates with an epoxy (EP) and a polyether ether ketone (PEEK) matrix in a quasi-isotropic (QI) [+45/0/-45/90]2s and an orthotropic (OT) fiber lay-up [0/90]4s were manufactured. To eliminate the influence of variant fiber systems, the thermoplastic tape and the thermoset prepreg contain similar carbon fibers (CF). After impact testing with three different impact energies, inner damages were investigated by using ultrasonic analyses. To get a deeper understanding of the interior damage mechanisms, cross sections of the damaged areas were examined via reflected light microscopy. By using these destructive and non-destructive test methods, significant differences in the damage behavior of composites with thermoplastic and thermoset matrix systems were identified for both laminate lay-ups.


2005 ◽  
Vol 297-300 ◽  
pp. 1291-1296 ◽  
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of this paper are to identify the impact damage behavior of plain-weave E-glass/epoxy composites and predict the fatigue life of the composites with impact-induced damage under constant amplitude loading. To identify these behaviors, the low velocity impact and fatigue after impact tests are performed for glass/epoxy composites having two types of fiber orientations. The impact damage behavior is dependent on the fiber orientation of the composites. The fatigue life of the impacted composites can be identified through the prediction model, which was proposed on the carbon/epoxy laminates by authors regardless of fiber orientations.


2006 ◽  
Vol 306-308 ◽  
pp. 279-284
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of the paper are to identify the impact damage and strength reduction behavior of sandwich structure, composed of carbon/epoxy laminates skin and Nomex core with two kinds of thickness (10 and 20mm). For these, low velocity impact tests were conducted using the instrumented impact-testing machine and damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading to identify the strength reduction behavior of the impacted sandwich structures. The impact damages are mainly delamination in carbon/epoxy skin and their behavior is mostly independent of core thickness. Also, their energy absorbing behavior is identified through calculating the energy absorbed by impact damage. Finally, the strength reduction behavior is evaluated through Caprino’s model, which was proposed on the unidirectional laminates.


2012 ◽  
Vol 581-582 ◽  
pp. 764-767 ◽  
Author(s):  
Sheng Shan Li ◽  
Xiao Yan Tong ◽  
Lei Jiang Yao ◽  
Bin Li

An experimental study was carried out to study the low-velocity impact characteristics and the influence of impact energy on the damage of plain woven carbon fiber reinforced silicon carbide composite. Visual, ultrasonic scanning, X-ray, industrial CT and infrared thermal imaging were then utilized respectively for Nondestructive Testing of the test specimens after impact test. The results show that the material damage area increase significantly with the increase of the impact energy. But as the specimen is run through, when the impact energy comes to12J, the damage area decrease. Compare the changing curves of the damage areas obtained by different detection methods, we can find that the changing trends of the damage areas obtained by ultrasonic C-scan and infrared thermal imaging are the same with the impact energies, indicating that the damage of the specimen are more credible by the two methods.


2021 ◽  
pp. 109963622199818
Author(s):  
RS Jayaram ◽  
VA Nagarajan ◽  
KP Vinod Kumar

Hybridization of sandwich panels and their different components have drawn huge attention due to the significant improvement in their attributes. Hybrid core of ‘Polyester Pin-reinforced Foam filled Honeycomb Sandwich panels’ (PFHS) were fabricated and compared with unreinforced ‘Foam filled Honeycomb Sandwich panels’ (FHS) in terms of low velocity impact and Compression After Impact (CAI) performance. The impact damage area was calculated by employing MATLAB image processing technique. Incorporating through thickness pins for connecting faces and core is an effectual way to improve interfacial bonding, specific bending stiffness and also imparts out of plane properties for sandwich panels. The low velocity impact tests performed on the sandwich panels revealed that the polyester pin reinforcement in foam filled honeycomb sandwich panel improved the load bearing capacity, total absorbed energy and reduced the impact damage area significantly. In CAI test, debond, wrinkling of face sheet, and buckling of face sheet and core are the major modes of failure. The addition of the pins enhanced the compressive strength for all the impact energy levels.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2657-2663 ◽  
Author(s):  
KI-WEON KANG ◽  
HEUNG-SEOB KIM ◽  
TAE-JIN CHUNG ◽  
SEUNG-KEE KOH

This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures


2018 ◽  
Vol 52 (25) ◽  
pp. 3491-3508 ◽  
Author(s):  
Forrest Baber ◽  
Vipul Ranatunga ◽  
Ibrahim Guven

In this study, a new approach for predicting damage and specific failure modes in laminated fiber reinforced composites is presented. The new method is based on the peridynamic theory and models individual plies, and represents fiber and matrix materials in each ply explicitly. These features enable analysis of laminates with arbitrary fiber orientation in a convenient manner. Additionally, a new failure mode identification algorithm has been developed and implemented. Instead of the conventional peridynamic damage parameter, the new algorithm works with individual broken bonds, which makes identification of different failure modes including matrix cracking, fiber breakage, and delamination straight-forward and unambiguous. The new peridynamic approach is demonstrated by considering the low-velocity impact damage on composite laminates with and without translaminar reinforcements. The translaminar reinforcement technique considered in this study is z-pinning; two different geometric configurations of z-pins are explored. The impact testing and the post-impact nondestructive evaluations with ultrasonic c-scans are performed at the Air Force Research Laboratory to characterize the delaminations. The impact tests on different samples are simulated using the current peridynamic approach. The predicted impact damage failure modes are compared against the experimental measurements. The new approach is shown to capture low-velocity impact damage both quantitatively and qualitatively.


2007 ◽  
Vol 345-346 ◽  
pp. 1529-1532 ◽  
Author(s):  
Ki Weon Kang ◽  
H.J. Kim ◽  
J.H. Kim ◽  
Heung Seob Kim ◽  
Yong Su Kim ◽  
...  

This paper deals with the damage resistance of glass/epoxy laminates with embedded shape memory alloy (SMA) subjected to low-velocity impact at various temperatures. For this goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: +20°C, -10°C and -40°C. And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration, the impact resistance parameters were employed to evaluate damage resistance of laminates with embedded SMA wires. As results, it was found that the damage resistance of glass/epoxy laminates with embedded SMA wires is dependent on the service temperature.


2011 ◽  
Vol 471-472 ◽  
pp. 461-465
Author(s):  
Nurashikin Sawal ◽  
Md Akil Hazizan

Low-velocity impact test on sandwich panels composed of aluminum face sheets and thermoplastic honeycomb cores have been performed to characterize the impact performance as a function of core thickness and drop heights. Impact parameters like maximum impact force, impact energy and impact damage area were evaluated and compared. Consequent damages were inspected visually on the impact surface as well as the rear surface. The experimental results found that panels with thicker core exhibited higher impact force than thinner core counterparts, allowing the panel to absorbed more energy. Higher degree of impact damage can be observed at elevated drop heights as most of the damage took the form of local core crushing, face sheet buckling and debonding between the face sheet and core,. Resulting damage area were different according to the core thickness as thicker core prone to absorbed more energy that lead to more damage propagation.


Sign in / Sign up

Export Citation Format

Share Document