Multi-Mode Extension Control of Pump-Control Electro-Hydraulic Servo System Based on PLC

2011 ◽  
Vol 121-126 ◽  
pp. 244-248
Author(s):  
Hong Bo Zheng ◽  
You Song Sun ◽  
Mian Li ◽  
Can Biao Xian

To satisfy the requirements of rapidity, stability and accuracy in positioning of pump-control electro-hydraulic servo system, the paper designs a multi-mode extension control switcher, which can realize switchover between different control modes and give full play to each control mode to meet the requirements of control system for various performances. In order to apply this method to practice, the principle, the control algorithm process and part program segments of multi-mode extension control realized by Mitsubishi PLC was introduced, and experiments was done to verify the control effect. The result shows that multi-mode extension control of pump-control electro-hydraulic servo system using PLC can satisfy the demands of control system.

2011 ◽  
Vol 317-319 ◽  
pp. 2181-2188
Author(s):  
Hong Bo Zheng ◽  
You Song Sun ◽  
Can Biao Xian

Aiming at the contradiction between rapid response, stability and accuracy in position control of pump-control electro-hydraulic servo system, a multi-mode extension control electro-hydraulic servo system was proposed, applying extension method in system design. According to the characteristic information of the system, correlation function was established by multi-mode extension control switch. The movement process was divided into three parts according to correlative degree and controlled in each zone by Bang -Bang controller, fuzzy controller and PID controller respectively. Simulation results showed that the system had rapid response and strong robustness, and can realize high precision control.


2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


2010 ◽  
Vol 44-47 ◽  
pp. 1355-1359 ◽  
Author(s):  
Xiang Xu ◽  
Zhi Xiong Li ◽  
Hong Ling Qin

Since electro-hydraulic servo system has fast response and highest control accuracy, it has been widely used in industrial application, including aircraft, mining, manufacturing, and agriculture, etc. With the fast development of computer science, it is feasible and available to evaluate the performance of the designed control system via virtual simulation before the practical usage of the system. In order to optimize the design procedure of the electro-hydraulic proportional controller, the co-simulation design method based on AMESim-Matlab is presented for the electro-hydraulic servo system in this paper. High accuracy of the mathematical model of electro-hydraulic servo system was full-fitted by the use of AMESim, and the advantage of high solving precision for large amount of calculation was full played using Matlab. The PID controller was employed to realize the efficient control of the motion of the hydraulic cylinder. The united simulation technique was adopted to verify the good performance of the designed control system. The simulation results suggest that the proposed method is effective for the design of electro-hydraulic servo systems and thus has application importance.


2014 ◽  
Vol 945-949 ◽  
pp. 2680-2684
Author(s):  
Ai Qin Huang ◽  
Yong Wang

Direct drive volume control (DDVC) electro-hydraulic servo system has many advantages compared to the valve control system. However, its application scopes were restricted by its poor dynamic performance. To study the reason for the low dynamic response, mechanical model of DDVC electro-hydraulic servo system is established. Structure parameters influencing the dynamic performance are analyzed. To optimize the structure parameters, the methodology of orthogonal experiment is presented. The selection of factors and levels of the experiment and the choice of the evaluation index are also revealed. The proposed methodology is carried out by simulation software and an optimal configuration is obtained. The dynamic response of the DDVC system with the optimal parameters is simulated. The results show that the dynamic performances are improved. The cross-over frequencyincreases from 0.0046 rad/s to 0.0442 rad/s, and the rise time Tr decreases from 488.6s to 47.90s.


Author(s):  
Hamid Roozbahani ◽  
Konstantin Frumkin ◽  
Heikki Handroos

Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for a hydraulic servo system. The modeling of the hydraulic servo system were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™. In this study, the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial were applied. In addition, an intelligent adaptive control algorithm and system model including its nonlinearities was developed to solve Lyapunov’s equation. Developed algorithm works properly and considered plant is met requirement of functioning with. The results shows that the developed adaptive control algorithm increases system performance in use devices significantly and might be used for correction of system’s behavior and dynamics.


2011 ◽  
Vol 80-81 ◽  
pp. 917-921 ◽  
Author(s):  
Hong Bo Zheng ◽  
You Song Sun ◽  
Mian Li ◽  
Can Biao Xian

The extension control is a newly developed intelligent control method used to solve control problem from information transformation presented based on extenics. Firstly some basic concepts about extension control were introduced, on this basis, the extension control algorithm was improved and the extension control was applied to pump-control electro-hydraulic servo system. The simulation and experimental results show that the pump-control electro-hydraulic servo system based on extension control has such advantages as quick and stable response, simple parameters determination and excellent dynamic quality, with a better prospect for development.


Author(s):  
Shanshan Chen ◽  

When the state of the robot reaches the smooth sliding plane, the current algorithm will generate high-frequency chattering, resulting in larger tracking error and longer response time. To solve these problems, we have proposed a trajectory tracking and control algorithm based on exponential reaching rate. The coordinate system of parallel robot system is established, and the kinetic energy and potential energy of the system are calculated. The results are brought into the Lagarnge equation to find the dynamic model of the system. The power amplifier, electro-hydraulic servo valve, hydraulic cylinder and its load are taken as generalized controlled objects, and the hydraulic servo system model is established. The exponential approaching rate is introduced to design the dynamics model and the trajectory tracking sliding controller of the hydraulic servo system model. By adjusting the upper and lower bounds of the external disturbance of the controller, the control rate is changed, the buffeting occurrence is reduced, and the response time is shortened, to realize the low error tracking of any trajectory of the robot. The experimental results show that the trajectory of the robot can be adjusted quickly and the desired trajectory is better tracked by the end.


2020 ◽  
Vol 13 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Bingwei Gao ◽  
Yongtai Ye

Background: In some applications, the requirements of electro-hydraulic servo system are not only precise positioning, but also the speediness capability at which the actuator is operated. Objective: In order to enable the system to achieve rapid start and stop during the work process, reduce the vibration and impact caused by the change of the velocity, at the same time improve the positioning accuracy, and further strengthen the stability and the work efficiency of the system, it is necessary to perform the synergistic control between the position and the velocity of the electrohydraulic servo system. Methods: In order to achieve synergistic control between the position and the velocity, a control method of velocity feed-forward and position feedback is adopted. That is, based on the position control, the speed feed-forward is added to the outer loop as compensation. The position control adopts the PID controller, and the velocity control adopts the adaptive fuzzy neural network controller. At the same time, the position and velocity sensors are used for feedback, and the deviation signals between the position and the velocity obtained by superimposing the feedback are used as the final input of the control object, thereby controlling the whole system. Results: The control effect of the designed position / velocity synergistic controller is verified by simulation and experiment. The results show that the designed controller can effectively reduce the vibration and impact caused by the change of the velocity, and greatly improve the response velocity and the position accuracy of the system. Conclusion: The proposed method provides technical support for multi-objective synergistic control of the electro-hydraulic servo system, completes the requirements of multi-task operation, improves the positioning accuracy and response velocity of the electro-hydraulic servo system, and realizes the synergy between the position and the velocity. In this article, various patents have been discussed.


Sign in / Sign up

Export Citation Format

Share Document