Analysis of the Thermal-Structure Coupling of the Band Brake

2011 ◽  
Vol 121-126 ◽  
pp. 499-503
Author(s):  
Fu Cai Hu ◽  
Hu Lin Li ◽  
Bei Si Xie

A 3D model of band brake is established with PRO/E software, and its thermal-structure nonlinear coupling is analyzed with finite element software MSC.Marc. Temperature field and stress field distribution of the brake band and the friction linings in braking process are calculated, and the failure mechanism of the connecting bolt is analyzed. All these provide references for optimization design.

2013 ◽  
Vol 444-445 ◽  
pp. 1422-1426
Author(s):  
Li Zi Chen ◽  
Chun Yuan Jing ◽  
Xiao Wei Guan

Based on the theory of the thermal conduction and the thermal elastic equations, does some researches in view of the thermal Damage of K9 glass by finite element analysis. The distribution of temperature field and thermal stress field of the ideal K9 glass which irradiated by 100W pulsed-Nd: YAG laser are simulated with finite element software. The result shows that the temperature of the surface of glass doesnt reach the melting and the thermal stress of it doesnt get to the requirement for fracture strength. Then, the model of K9 glass containing inclusions has be built. The simulation result indicates that inclusions may affect the distribution of temperature field and thermal stress field of the K9 glass, which makes the injected laser beams energy centralize on a small area around the inclusions owing to the existence of the strong absorbing, thus leading to K9 glass laser damage threshold reduction and easier to thermal damage.


2006 ◽  
Vol 22 (3) ◽  
pp. 213-220 ◽  
Author(s):  
K. J. Shou ◽  
F. W. Chang

AbstractIn this study, physical and numerical models were used to analyze pipe-soil interaction during pipejacking work. After calibrating with the physical modeling results, the finite element software ABAQUS [1] was used to study the pipejacking related behavior, such as surface subsidence, failure mechanism, pipe-soil interaction, etc. The results show that the driving force in the tunnelling face is very important and critical for pipejacking. Surface subsidence is mainly due to the lack of driving force, however, excessive driving force could cause the unfavorable surface heaving problem. It also suggests that the depth of the pipe is critical to determine a proper driving force to stabilize the tunnelling face.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2013 ◽  
Vol 639-640 ◽  
pp. 593-597
Author(s):  
Lin Chen ◽  
Yong Yao ◽  
Jiong Yang ◽  
Zhao Qiang Zhang

According to finite element strength reduction method,the article has discussed the failure mechanism of anti-sliding pile by using finite element software MIDAS /GTS ,exploration report and anti-sliding pile design data.The comparative analysis shows that the failure of anti-siding pile is contributed by the slope excavation and rainwater.The analysis method and results can provide reference significance to other anti-sliding pile design.This paper also provide a feasible method for prediction of consequence in slope excavation.


2013 ◽  
Vol 712-715 ◽  
pp. 1209-1212 ◽  
Author(s):  
Ke Zhang ◽  
Xiang Nan Ma ◽  
Li Xiu Zhang ◽  
Wen Da Yu ◽  
Yu Hou Wu

The article has analyzed the changes of temperature of different materials of the spindle, and considered 170SD30 Ceramic Motorized Spindle and the same model Metal Motorized Spindle as the research objects, analyzed the inside heat source and heat transfer mechanism of the high-speed motorized spindle; used finite element software to set up the model of the motorized spindle, and did simulation and analysis. Verified by simulation, heat transfer rate of ceramic materials is slower than the metallic materials, in actual operation of the process, due to different materials have different heat transfer rate, so the temperature distribution of the different materials of motorized spindle are different. This conclusion provides the basis to solve motorized spindle temperature field distribution.


2011 ◽  
Vol 66-68 ◽  
pp. 1240-1244
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Qi Zheng Zhou

As the most dominative component under stress in an external combustion cam engine, the working condition of piston is very rigor. Once new design type and technical improvement is applied, it is necessary to analysis its thermal load and take secure steps. And the finite element model on each conditions of thermal is calculated, which is used to estimate the temperature field and provide a theoretical basis for further structural strength analysis and optimization design. Choosing analysis results of the piston as reference and taking five structural parameters of the piston as design variables, two objective functions including piston mass and maximal Von Mises stress are respectively considered. The optimum design of the piston is executed and the results indicate that it is feasible to improve temperature field and strength of the piston. These results enrich and develop the research on structural analysis and optimization of spatial engine, which are of guiding significance for analyzing engine strength and related problem in theoretically.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


2014 ◽  
Vol 614 ◽  
pp. 124-127
Author(s):  
Meng Kai Lin ◽  
Hai Lian Li

Taking the concrete pouring for a passenger station’s pile cap as the research background, the paper establishes a model of pile cap’s hydration heat, by using the finite element software MIDAS. The paper also studies the main parameters and the temperature field theory which affect the hydration heat. It indicates that the pipe cooling method can significantly reduce the temperature difference between the inside and the outside when pouring massive concretes, and it is an effective way to prevent the generation of cracks.


2012 ◽  
Vol 178-181 ◽  
pp. 2006-2012
Author(s):  
Yu Dong Nie ◽  
Wei Zhang ◽  
Zong Lin Wang

Based on the Nenjiang Bridge located in the Qi-Gan expressway and using the finite element software ANSYS, we analysis the influences of solar radiation, free air temperature, inside temperature, wind speed, thermal conductivity of concrete, section height, flange plate length and bridge pavement on the temperature field of PC box-girder in this paper. And the solar radiation, thermal conductivity of concrete and bridge pavement is presented as the leading factors for the temperature field of PC box-girder.


Sign in / Sign up

Export Citation Format

Share Document