Wheeled Crane Hybrid Power Control System Design

2011 ◽  
Vol 130-134 ◽  
pp. 1958-1962
Author(s):  
Xin Min Zhou ◽  
Dong Xiang Zhou

This paper analyses the key point of energy saving in the Wheeled Crane hybrid power system. The scheme of 25T Wheeled Crane hybrid power system is designed based on supercapacitor. DSP, PLC and Touch panel is used as the control center of the system. The design of main circuit, measurement system, PLC system and system communication and coordinate control is discussed. Finally, main circuit and system experiment results are presented. Experiment shows that this system may save energy 30% or above.

2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1889 ◽  
Author(s):  
Nicu Bizon ◽  
Valentin Alexandru Stan ◽  
Angel Ciprian Cormos

In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.


2013 ◽  
Vol 288 ◽  
pp. 148-155
Author(s):  
Qi Hui Lv ◽  
Xin Yuan Xiao

In order to reduce loader engine installed power and save energy, we designed the driving scheme of power system for parallel hybrid loader by Analysis of different way of connection between diesel engine and electric motor. We chose ISG power electric multifunction and super capacitor as the core component to design the Loader auxiliary power system and movable arm cylinder gravitational potential energy recovery system. We established ADVISOR software model of hybrid power Loader, and the simulation results show that diesel engine installed power of the hybrid power Loader is reduced by 21%; fuel consumption is reduced by 9.2%. Through optimize control strategy, the diesel engine can always working in high efficient area or idle area. Practical application shows that this design scheme has the potential economic and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document