Effect of Liquid-Solid Lubricant on Mixed Lubrication in Line Contact

2011 ◽  
Vol 148-149 ◽  
pp. 778-784
Author(s):  
Rattapasakorn Sountaree ◽  
Panichakorn Jesda ◽  
Mongkolwongrojn Mongkol

This paper presents the performance characteristics of two surfaces in line contact under isothermal mixed lubrication with non-Newtonian liquid–solid lubricant base on Power law viscosity model. The time dependent Reynolds equation, elastic equation and viscosity equation were formulated for compressible fluid. Newton-Raphson method and multigrid technique were implemented to obtain film thickness profiles, friction coefficient and load carrying in the contact region at various roughness amplitudes, applied loads, speeds and the concentration of solid lubricant. The simulation results showed that roughness amplitude has a significant effect on the film pressure, film thickness and surface contact pressure in the contact region. The film thickness decrease but friction coefficient and asperities load rapidly increases when surface roughness amplitude increases or surface speed decreases. When the concentration of solid lubricant increased, friction coefficient and asperities load decrease but traction and film thickness increase.

2014 ◽  
Vol 1025-1026 ◽  
pp. 32-36 ◽  
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the performance characteristics of thermo-elastohydrodynamic lubrication (TEHL) in line contact with non-Newtonian liquid–solid lubricant. The time independent Reynolds equation, energy equation, elastic equation and load carrying with solid particle equation were formulated for compressible fluid. Newton-Raphson method and multigrid technique were implemented to obtain film thickness, film pressure, film temperature, friction coefficient and load carrying with solid particle equation in the contact region at various concentrations of solid lubricant and applied loads. The simulation results showed that film thickness and film temperature increase but film pressure decreases when solid particles are added into liquid lubricant. The maximum film temperature and load carrying of solid particle increased but friction coefficient decreased when concentration of solid particle increased. For increasing applied loads, the minimum film thickness decreases but maximum film temperature and friction coefficient increase for all liquid lubricant and liquid-solid lubricants.


1992 ◽  
Vol 114 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Huang Ping ◽  
Wen Shizhu

Micro-EHL problems of line contact have been solved by Newton-Raphson method. The results are given from the zero roughness amplitude to the value higher than the film thickness in the smooth surface solution. With the increase of the roughness amplitude, cavitations may be found inside the contact region. This situation is predicted by a critical roughness amplitude. The solutions are also given after the roughness exceeds to the critical value. From the results it is found that the film thickness is still thick enough even if the roughness is very high. The other factors to influence on the pressure and film thickness, such as loads, roughness wavelengths and oil compressibility, are considered as well.


2015 ◽  
Vol 736 ◽  
pp. 45-52
Author(s):  
Panichakorn Jesda

<img style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-copy-img" src="" /><a style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-search-anchor" target="_blank"></a><img style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-search-img" src="" />This paper presents the results of a analysis of rough thermo-elastohydrodynamic lubrication (TEHL) of line contact with non-Newtonian lubricant blended with Al2O3nanoparticles and MoS2 microparticles. The simultaneous systems of time independent modified Reynolds equation, elasticity equation, load carrying with micro particle equation and energy equation were solved numerically using multigrid multilevel with full approximation technique. In this study, the effect of Al2O3nanoparticle and MoS2microparticle additives and surface roughness were implemented to obtain film thickness, film pressure, film temperature, friction coefficient and load carrying with microparticle in the contact region. The simulation results showed that the maximum film temperature and friction coefficient increase slightly but the minimum film thickness decreases slightly with an increase in Al2O3nanoparticle concentration due to thermal enhancement of nanofluid. For increasing of microparticle concentration, the minimum film thickness and friction coefficient decrease because the increasing of friction heating of MoS2microparticle.


2012 ◽  
Vol 482-484 ◽  
pp. 1057-1061
Author(s):  
Sountaree Rattapasakorn ◽  
Jesda Panichakorn ◽  
Mongkol Mongkolwongrojn

This paper presents the effect of surface roughness on the performance characteristics of elastohydrodynamic lubrication with non-Newtonian fluid base on Carreau viscosity model in elliptical contact. The time independent modified Reynolds equation and elastic equation were formulated for compressible fluid. Perturbation method, Newton Raphson method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various amplitude of combined surface roughness, applied loads, speeds and elliptic ratio. Simulation results show surface roughness amplitude has significant affected the film pressure in the contact region. The minimum film thickness decreases but friction coefficient increases when the combined roughness and applied loads increases. The minimum film thickness and friction coefficient both increase as the relative velocity of the ball and the plate is increase. For increasing the elliptic ratio, the minimum film thickness increases but the friction coefficient decreases.


2013 ◽  
Vol 651 ◽  
pp. 505-510 ◽  
Author(s):  
Khanittha Wongseedakaew

This paper presents the effects of transient rough surface thermo-elastohydrodynamic lubrication (TEHL) of rollers for soft material with non-Newtonian fluid base on power law model. The time independent modified Reynolds equation, energy equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel method to obtain the film pressure profiles, film thickness profiles and friction coefficient in the contact region. The simulation results show surface roughness has effect on film thickness but its effect on film temperature is insignificant. The minimum film thickness decreases while the coefficient increases when the amplitude of surface roughness increases. Meanwhile, increasing applied loads causes the friction coefficient to decrease.


2013 ◽  
Vol 420 ◽  
pp. 36-41
Author(s):  
Jesda Panichakorn ◽  
Khanittha Wongseedakaew

This paper presents performance characteristics of transient thermo-elastohydrodynamic lubrication (TEHL) in line contact with Newtonian fluids. The time-dependent modified Reynolds equation, energy equation and elasticity equation with initial conditions were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel method for an involutes spur gear to obtain the film pressure profiles, film thickness profiles, film temperature and friction coefficient in the contact region. In this analysis, the load is applied on either two pairs or one pair of gear teeth. The simulation results show that at approach point, the film thickness is minimized and film temperature rapidly increases. Film temperature and friction coefficient were suddenly increase when the transition from two pairs to one pair and vice versa are modeled as a step variation of load. The friction coefficient and film temperature were occurrence at pitch point. Film temperature and friction coefficient increase but film thickness decreases when applied load increases. For increasing of speeds, film thickness and film temperature increase but friction coefficient decreses.


2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


1992 ◽  
Vol 114 (1) ◽  
pp. 181-185 ◽  
Author(s):  
K. To̸nder

A new lubrication concept is presented, Deep Disconnected Cavities. It differs from the lubrication of microcavities, previously treated by other authors, by the deepness of the cavities. The validity of Reynolds’ equation and nonturbulent conditions are assumed. By a Taylor expansion scheme, it is shown that the roughness effects are expressible in terms of roughness factors modifying the Reynolds equation, similar to those proposed by Patir and Cheng (1978). Unlike those established for ordinary roughness, the DDC factors are independent of local film thickness and roughness amplitude (cavity depth), and may therefore be used to modify standard hydro-dynamic parameters. By a different mathematical approach, involving upper and lower bounds on the various hydrodynamic quantities, it is found that Reynolds’ equation and all the other hydrodynamic expressions may be written just as for smooth surfaces, with the following modifications: 1. The film thickness should be expressed by the minimum gap function, and not by the mean gap function. 2. There are, in general, three effective viscosities, lower than the physical one, two of which are associated with the x and y directions respectively and appear in the modified Reynolds equation as well as in the flow terms. The third one appears only in the expression for shear stress.


1967 ◽  
Vol 182 (1) ◽  
pp. 153-162 ◽  
Author(s):  
D. S. Bedi ◽  
M. J. Hillier

The theory of rolling is modified to allow calculation of a hydrodynamic film thickness and viscous friction coefficient using Reynolds equation for the lubricant. Calculations are made for the case where the fluid film covers the arc of contact. The film thickness is assumed uniform and is determined by the principle of minimum rate of entropy production. It is shown that the apparent coefficient of friction varies significantly over the arc of contact. At small reductions the roll load tends to decrease with speed of rolling, while at high reductions the load tends to increase. The point of maximum roll pressure does not coincide with the neutral plane; and under certain rolling conditions there may be no maximum in the pressure over the arc of contact.


2019 ◽  
Vol 71 (9) ◽  
pp. 1080-1085 ◽  
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Yi Liu ◽  
Longjie Dai ◽  
Zhaohua Shang

Purpose The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive. Design/methodology/approach In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations. Findings It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”. Research limitations/implications The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems. Originality/value The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.


Sign in / Sign up

Export Citation Format

Share Document