Relationships between the Volumetric Parameters and the Marshall Index for Asphalt Mixtures

2012 ◽  
Vol 174-177 ◽  
pp. 947-953 ◽  
Author(s):  
Tong Jiang Fan ◽  
Hao Chen

determination of the optimum asphalt content usually associates the Marshall Index with volumetric parameters for hot mix asphalt (HMA). Because unreasonable volumetric parameters may result in the asphalt content being more or less so that performance of HMA are influenced. Therefore in this paper, relationships between volumetric parameters and the Marshall Index were studied for two kinds of gradations, AC25 and AC13, which for each kind of gradation, according to the orthogonal test method, the pass percentages of aggregate between the each sieve size and the usage of asphalt contents were changed to form 50 sets of asphalt mixtures for the Marshall test and the volumetric parameters experiment. The results show that rank of influence significance of volumetric parameters on the Marshall Index is Gmb and VV, then VMA and last VFA. However, for fine aggregate (AC13) asphalt mixtures, as Gmb increases, all the MS and the FL increase. Meanwhile, as VV increases, the MS and the FL of AC25 asphalt mixtures increase, whereas for AC13 asphalt mixtures the MS decreases but the FL increases. So for proportion design of fine aggregate (AC13) asphalt mixtures, the fine aggregate and the asphalt content must be strictly controlled to meet the VV requirement and to avoid asphalt pavements to become over-densified. In addition, with VMA increases, for course aggregate (AC25) asphalt mixtures, MS and FL increase, but for course aggregate (AC13) asphalt mixtures, MS decreases but FL increases. Otherwise, the influence of VFA on MS and FL could be nearly ignored.

2018 ◽  
Vol 24 (5) ◽  
pp. 124
Author(s):  
Mohammed Qadir Ismael ◽  
Reem Fouad Ahmed Al-Harjan

The current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances are also observed. The evaluation process is illustrated by volumetric properties such as density, air voids, voids in mineral aggregate and voids filled with asphalt. Marshall test is carried out to find stability and flow values. The resistance to moisture effect is investigated by conducting the compressive test for dry and water immersed conditions to find the index of retained strength. The experimental results supported the recommendations to increase tolerances of coarse and fine aggregate gradations to ± 7.0 % and         ± 5.0 % respectively. The optimum asphalt content tolerance can be increased to ± 0.5 %. The tolerances of filler gradation and mixing temperature are preferable to keep their current values.  


2020 ◽  
Vol 2 (1) ◽  
pp. 33-39
Author(s):  
Eko Wiyono ◽  
Anni Susilowati

AbstractThe objectives of the research were to obtain the Marshall properties of asphalt concrete mixture mixed with variations of manual compact collisions and to determine the optimum number of compactions collisions in the asphalt concrete mixture using anti stripping additives. The independent variables in this research are variation of the number of compaction collisions of asphalt concrete as many as 2x50, 2x75, 2x100, 2x125 and 2x150, with optimum asphalt content of 6%, and Wetfix Be 0,3% to optimum asphalt content. Marshall test method used in this research was based on SNI 06-2489-1991. The dependent variables (research parameters) included percent of cavities in the aggregate (VMA), percent of cavities in the mix, percent of cavities filled in asphalt (VFB), percent of cavity to mix (VIM), stability, melting, and Marshall Quotient. The result showed that the optimum number of compactions of asphalt concrete was 2x100 with Marshall properties value fulfilling SNI 8198-2015 specification. In Asphalt concrete mixture with optimum asphalt content (KAO) of 6%, Wetfix Be level of 0,3%, optimum number of compactions of 2X100, could be obtained by Aggregate (VMA) cavity 17.50%; Asphalt filled cavity (VFB) 76.50%; Cavity to Mixture (VIM) 4,00%; Stability of 1800.00 kg; Melting of 3.75 mm; and Marshall Quontient 500.00 kg/mmKeywords: Anti Stripping, Collision, Compaction, Wetfix BeAbstrakTujuan penelitian untuk mendapatkan nilai properties Marshall campuran beton aspal dengan berbagai variasi jumlah tumbukan pemadatan dan menentukan jumlah tumbukan pemadatan yang optimum pada campuran beton aspal dengan menggunakan bahan tambah anti stripping. Variabel bebas pada penelitian ini adalah variasi jumlah tumbukan pada pemadatan pembuatan beton aspal  sebanyak 2x50, 2x75, 2x100, 2x125 dan 2x150, dengan Kadar Aspal Optimum 6%, dan Wetfix Be 0,3% terhadap kadar aspal optimum. Metode pengujian Marshall berdasarkan SNI 06-2489-1991. Variabel terikat (parameter penelitian) meliputi persen rongga dalam agregat (VMA), persen rongga dalam campuran, persen rongga terisi aspal (VFB), persen rongga terhadap campuran (VIM), stabilitas, kelelehan, Marshall Quotient. Hasil penelitian didapat jumlah tumbukan pada pemadatan beton aspal yang optimum sebesar 2x100 dengan nilai properties Marshall memenuhi spesifikasi SNI 8198-2015. Campuran beton aspal dengan Kadar Aspal Optimum (KAO) 6%, kadar Wetfix Be sebesar 0,3%, Jumlah Tumbukan Optimum 2X100, diperoleh Rongga terhadap Agregat (VMA) 17,50%; Rongga Terisi Aspal (VFB) 76,50%; Rongga terhadap Campuran (VIM) 4,00%; Stabilitas 1800,00 kg; Kelelehan 3,75 mm; dan Marshall Quontient 500,00 kg/mmKata kunci: Anti Stripping, Tumbukan, Pemadatan, Wetfix  Be


2021 ◽  
Vol 3 (2) ◽  
pp. 247-255
Author(s):  
Dede Novit Senolinggi ◽  
Alpius ◽  
Charles Kamba

This study is to get character each of Laston base mixture using the Mount Pura Lau stone, Tikala District. The methodology in this study is to test each character of the sample to be tested for its, whether it is coarse aggregate, fine aggregate, filler, and asphalt. After testing each character, we will design the composition of the mixture for the manufacture of rough Laston Base (AC-BASE) specimens and obtain several variants of asphalt content, namely 4.5%, 5%, 5.55%, 6%, and 6.5%. After getting the composition, the test object will be made immediately. After the object has been made, it is time to test with Marshall test tool to obtain the residual Marshall Immersion / Stability Index (SMS) or the durability of the mixture using the optimum bitumen content. The results of the optimum asphalt content were 5.5%, MQ 906.88 Kg / mm and immersion index (IP) 96.06% which showed that met the requirements, namely 90% and meets the specifications of Bina Marga. So that it can be used as a recommendation to the regional government and local residents.


2021 ◽  
Vol 380 ◽  
pp. 553-566
Author(s):  
Wenjing Yin ◽  
Gang Zhou ◽  
Dong Liu ◽  
Qunzhi Meng ◽  
Qian Zhang ◽  
...  

2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document