Structural Finite Element Analysis and Optimization of Underwater High Pressure Valve

2012 ◽  
Vol 190-191 ◽  
pp. 832-835
Author(s):  
Xian Zhong Yi ◽  
Sheng Zong Jiang ◽  
Jun Feng Zhang ◽  
Ding Feng ◽  
De Li Gao

Abstract. The ship side flap valve underwater works with high pressure. In this paper, the valve body is analyzed using seamless connection between the finite element analysis software and Pro/E software. In the analysis, multiple load cases applied to the valve body are as follows: open condition, closed condition and seal test. The analysis result shows the maximum stress value occurs when the flap valve is open. Moreover, stress value is approximately 65 percent the range of the minimum yield strength, but the strength requirement of the valve body is satisfied. Finally, this paper presents a method for weakening the stress concentration effect by increasing the internal transitional fillet radius between the two hollow and intersectant cylinders of the valve body.

2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.


2014 ◽  
Vol 989-994 ◽  
pp. 3286-3289
Author(s):  
Ying Fei Wang ◽  
San Peng Deng ◽  
Bo Chen ◽  
Lin Ling Zhang

As ground support equipment, drag parachute packing machine is used for packaging aircraft drag parachute. It is driven by high-pressure inert gas. Drag parachute will be compacted in the cylinder loading institution by high pressure. The overall structure of drag parachute packing machine is designed. The finite element analysis and structure optimization of drag parachute packing manipulator is completed. The pneumatic control system is designed. It provides an approach for drag parachute packing technology.


2012 ◽  
Vol 184-185 ◽  
pp. 235-238
Author(s):  
Zhi Cheng Huang ◽  
Ze Lun Li

The frame of 4MPa vertical type high-pressure grouting machine is used as the research object. The finite element analysis software ANSYS is applied to the modal finite element analysis of the frame. The first five order natural frequencies and the corresponding vibration modes of the frame are obtained, and then the influence of every mode shape on the performances of the frame was discussed. It provides a reference for the dynamic structural design and optimization of the frame of vertical type high-pressure grouting machine.


2012 ◽  
Vol 619 ◽  
pp. 176-179
Author(s):  
Xu Hui Liu ◽  
X.Y. Yao ◽  
H.D. Liao ◽  
F. Li ◽  
T.Y. Liu

The reactor is the best structure for the chemical reaction on high pressure. The paper introduces creative design of a type high pressure sealing structure, and validates the feasibility from the mechanical aspect. The stress distribution and deformation are investigated by the finite element analysis method, which provides the design proof for the high pressure sealing structure.


2013 ◽  
Vol 546 ◽  
pp. 122-126
Author(s):  
Xiao Long Hu ◽  
Zhong Bao Qin ◽  
Jian Feng Guo ◽  
Ying Juan Yue

This paper discussed the impact of the quantity and position of constraint on the natural frequency of special high-pressure seamless cylinders. The Finite Element modal of the special high-pressure seamless cylinders was constructed based on ANSYS12.0. The vibration frequencies and modal shapes under different conditions were obtained by the Finite Element analysis. The result will be used for improving the safe capability of the Special High-pressure Seamless Cylinders.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


Sign in / Sign up

Export Citation Format

Share Document