Preparation and Characterization of Bisphenol A Molecularly Imprinted Silica Nanospheres

2012 ◽  
Vol 197 ◽  
pp. 703-706
Author(s):  
Wei Shi ◽  
Jing Bo Zhu ◽  
Shao Ping Fu

Molecularly imprinted polymers of bisphenol A were synthesized with a sol-gel process on the supporter of silica nanospheres. The BPA-imprinted silica nanospheres were characterized by scanning electron microscope, dynamic adsorption, static adsorption tests and molecular selectivity tests. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymers, the equilibrium association constant and the apparent maximum number of binding sites were estimated to be 0.20 μmol•ml-1 and 137.55 μmol•g-1, respectively. Bisphenol A and three analogues, tetrabromobisphenol A (TBBPA), bisphenol C (BPC) and nonylphenol (NP) were employed for selectivity tests. The results indicated that the imprinted polymers exhibited excellent selectivity and specificity toward bisphenol A.

2011 ◽  
Vol 399-401 ◽  
pp. 1894-1897
Author(s):  
Jian Hua Li ◽  
Zong Jian Zheng ◽  
Shao Ping Fu ◽  
Jing Bo Zhu

Highly selective molecularly imprinted layer-coated silica nanoparticles for paclitaxel were synthesized by molecular imprinting technique with a sol–gel process on the supporter of silica nanoparticles. The morphology of the obtained polymers was characterized by scanning electron microscopy (SEM). The binding properties of the imprinted polymers were evaluated through the equilibrium rebinding experiments. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymers with equilibrium dissociation constants of 0.0509 g•L-1and 0.0094 g•L-1, respectively. Paclitaxel and its analogue were employed for selectivity tests. The results indicated that the imprinted polymers exhibited good selectivity and specificity toward paclitaxel.


1984 ◽  
Vol 219 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
Y A Lefebvre ◽  
J T Venkatraman

Nuclear envelopes and nuclear matrices were isolated from the male-rat liver. Incubation of 125I-labelled 3,3′,5-tri-iodothyronine (T3) with the nuclear-envelope fraction resulted in specific binding of T3 to the membranes. Maximum specific binding occurred at 30 degrees C after 2h incubation. Storage for 1 week at -80 degrees C resulted in no loss of binding. Scatchard analysis revealed a class of binding sites with KD 86 nM. 3,3′,5′-Tri-iodothyronine was as effective a competitor of [125I]T3 binding to nuclear envelopes as was L-T3 itself, and tri-iodothyroacetic acid was 70% as potent as T3. L- and D-thyronine did not compete for [125I]T3 binding. Incubation of nuclear envelopes with 0.6 M-NaCl before addition of T3 resulted in the complete loss of specific binding sites, whereas exposure of the membranes to 2.0 M-NaCl after incubation with T3 did not extract binding sites. Nuclear matrices, after incubation with [125I]T3 under the same conditions, were shown to possess a class of binding sites with a similar KD but with approx. 30% of the maximum binding capacity. Nuclear envelopes from hypothyroid animals may possess slightly lower numbers of binding sites compared with nuclear envelopes from the intact animal, whereas nuclear matrices from hypothyroid animals have the same number of binding sites as do nuclear envelopes from the intact animal. In conclusion, nuclear envelopes and nuclear matrices have a class of binding sites with relatively high affinity for T3. It is distinct from nuclear and cytosolic binding sites.


Author(s):  
Neelam Verma ◽  
Nitu Trehan

Quercetin is a flavonoid present in herbs, fruits and vegetables. It acts as an antioxidant, anticancer and anti-inflammatory agent. Molecularly Imprinted Polymers (MIPs) were prepared for quercetin by non-covalent approach in the presence of monomer acrylamide, EGDMA as the crosslinker, AIBN as the initiator and methanol and ethyl acetate as porogenic solvents. Most stable MIPs were synthesized using methanol as the solvent. Step wise removal of the template with methanol and acetic acid (9:1) left binding sites that retain complementary specificity and affinity. These stable MIPs were analysed by FT-IR technique. It was observed that there was hydrogen bonding between the template and the functional monomer. This study was further supported by NMR analysis for MIPs and NMIPs (control polymer) that cavity for quercetin has been created in MIPs and absent in the case of NMIPs. MIPs were characterized by SEM analysis that showed more clusters in case of MIPs than NMIPs as an effect of imprinting. These MIPs can be used for extraction of quercetin from herbs in a one step process.


2013 ◽  
Vol 641-642 ◽  
pp. 55-59 ◽  
Author(s):  
Yan Jie Bi ◽  
Wen Yan Li ◽  
Chen Yuan ◽  
Bin Song Wang

In this paper, molecularly imprinted polymers with high selectivity for nonylphenol (NP) were synthesized by sol-gel process using 4-vinylpyridine (4-Vpy) as functional monomer, ethyleneglycol dimethacrylate as crosslinker (EGDMA), azobisisobutyronitrile (AIBN) as initiator, NP as template molecules. The performance of imprinted material was evaluated by adsorption kinetic, adsorption isotherm and adsorption selectivity. The results indicated that this material had not only binding properties but also high selectivity to the template molecule, which had good application prospects in the selective enrichment and separation of NP for pretreatment and analysis of complex environmental samples.


RSC Advances ◽  
2016 ◽  
Vol 6 (70) ◽  
pp. 66297-66306 ◽  
Author(s):  
Tingting Chang ◽  
Yuxin Liu ◽  
Xiangyang Yan ◽  
Shaomin Liu ◽  
Haisong Zheng

Uniform and monodisperse Fe3O4@MIP nanospheres were directly synthesized using a sol–gel method on the surface of Fe3O4–COOH spheres.


1992 ◽  
Vol 67 (05) ◽  
pp. 582-584 ◽  
Author(s):  
Ichiro Miki ◽  
Akio Ishii

SummaryWe characterized the thromboxane A2/prostaglandin H2 receptors in porcine coronary artery. The binding of [3H]SQ 29,548, a thromboxane A2 antagonist, to coronary arterial membranes was saturable and displaceable. Scatchard analysis of equilibrium binding showed a single class of high affinity binding sites with a dissociation constant of 18.5 ±1.0 nM and the maximum binding of 80.7 ± 5.2 fmol/mg protein. [3H]SQ 29,548 binding was concentration-dependently inhibited by thromboxane A2 antagonists such as SQ 29,548, BM13505 and BM13177 or the thromboxane A2 agonists such as U46619 and U44069. KW-3635, a novel dibenzoxepin derivative, concentration-dependently inhibited the [3H]SQ 29,548 binding to thromboxane A2/prosta-glandin H2 receptors in coronary artery with an inhibition constant of 6.0 ± 0.69 nM (mean ± S.E.M.).


Sign in / Sign up

Export Citation Format

Share Document