A Novel Registration Algorithm for Pol-InSAR Images Based on the RVOG Model

2012 ◽  
Vol 198-199 ◽  
pp. 1475-1480
Author(s):  
Sha Sha Wu ◽  
Dao Wei Yan ◽  
Zheng Lu ◽  
Ming Ming Bian

In the processing of the polarimetric interferometric synthetic aperture radar (Pol-InSAR), the image registration is a key procedure. If the error of image registration occurs, the signal-to-noise ratio (SNR) of the interferometric image will be lowered and the precision of the height estimation will be decreased. Numerous registration algorithms have been proposed to solve the above-mentioned problem. However, in forested areas, the effect of volume scattering is significant. This property yields the fact that the characteristic of phase and frequency in the interferometric image is not obvious, leading to the worse performance of conventional registration algorithms. In this paper, a novel registration algorithm based on the random volume over ground (RVOG) model is presented. The method employs the fact that the coherence coefficients of the same pixel are displayed as a beeline in the complex coordinate plane for forested scenes. The image offset which yields the best linearity of coherence coefficients will be treated as the final estimation result. Simulation results verify that this method is able to provide the image registration estimation in the pixel and sub-pixel levels.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Pingping Huang ◽  
Wei Xu

For future spaceborne synthetic aperture radar (SAR) missions, digital beamforming (DBF) on receive in elevation to form a sharp high receive beam will be adopted to improve the signal to noise ratio (SNR) level and suppress range ambiguities. However, in some special cases, range ambiguities may be received by grating lobes with the high receive beam gain, and range ambiguities would not be well suppressed and even may be increased. In this paper, a new receiving approach based on analog beamforming (ABF) and DBF is proposed. According to the spaceborne SAR imaging geometry and the selected pulse repetition frequency (PRF), the antenna patterns of all subapertures of the whole receive antenna in elevation are adjusted by ABF at first. Afterwards, signals from all subapertures in elevation are combined by a real time DBF processor onboard. Since grating lobes could be suppressed by the antenna pattern of the subapertures via ABF, range ambiguities would be well suppressed even if ambiguities are received by grating lobes. Simulation results validate the proposed approach.


2021 ◽  
Vol 11 (10) ◽  
pp. 4440
Author(s):  
Youheng Tan ◽  
Xiaojun Jing

Cooperative spectrum sensing (CSS) is an important topic due to its capacity to solve the issue of the hidden terminal. However, the sensing performance of CSS is still poor, especially in low signal-to-noise ratio (SNR) situations. In this paper, convolutional neural networks (CNN) are considered to extract the features of the observed signal and, as a consequence, improve the sensing performance. More specifically, a novel two-dimensional dataset of the received signal is established and three classical CNN (LeNet, AlexNet and VGG-16)-based CSS schemes are trained and analyzed on the proposed dataset. In addition, sensing performance comparisons are made between the proposed CNN-based CSS schemes and the AND, OR, majority voting-based CSS schemes. The simulation results state that the sensing accuracy of the proposed schemes is greatly improved and the network depth helps with this.


2013 ◽  
Vol 846-847 ◽  
pp. 1185-1188 ◽  
Author(s):  
Hua Bing Wu ◽  
Jun Liang Liu ◽  
Yuan Zhang ◽  
Yong Hui Hu

This paper proposes an improved acquisition method for high-order binary-offset-carrier (BOC) modulated signals based on fractal geometry. We introduced the principle of our acquisition method, and outlined its framework. We increase the main peak to side peaks ratio in the BOC autocorrelation function (ACF), with a simple fractal geometry transform. The proposed scheme is applicable to both generic high-order sine-and cosine-phased BOC-modulated signals. Simulation results show that the proposed method increases output signal to noise ratio (SNR).


2021 ◽  
Vol 13 (4) ◽  
pp. 618
Author(s):  
Zexin Lv ◽  
Fangfang Li ◽  
Xiaolan Qiu ◽  
Chibiao Ding

Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) can improve interferometric coherence and phase quality, which has good application potential. With the development of the Mini-SAR system, Unmanned Aerial Vehicle borne (UAV-borne) PolInSAR systems became a reality. However, UAV-borne PolInSAR is easily affected by air currents and other factors, which may cause large motion errors and polarization distortion inevitably exists. However, there are few pieces of research which are about motion compensation residual error (MCRE) and polarization distortion effects on PolInSAR. Though the effects of MCRE on Interferometric SAR (InSAR) and polarization distortion on PolInSAR were studied, respectively, these two parts are independently modeled and analyzed. In this paper, a model that simultaneously considers the effects of these two kinds of errors is proposed, and simulation results are given to validate the model. Then, a quantitative analysis based on a real Quadcopter UAV PolInSAR system is performed according to the model, which is valuable for system design and practical application of the UAV-borne PolInSAR system.


2016 ◽  
Vol 36 (8) ◽  
pp. 0828001
Author(s):  
张宁 Zhang Ning ◽  
卢智勇 Lu Zhiyong ◽  
孙建锋 Sun Jianfeng ◽  
周煜 Zhou Yu ◽  
栾竹 Luan Zhu ◽  
...  

1998 ◽  
Vol 52 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Yutaka Goto

“Generalized” interpolation (called GIα here) of fast Fourier transform (FFT) spectra apodized by a family of sinα ( X) windows has previously been proposed. The GIα gives the highly accurate interpolated frequency by calculating the simple formula of frequency determination with the use of two squared ratios between three magnitudes nearest to the peak maximum on the apodized FFT spectrum. Although the value of window parameter α, limited to integer values, has been used for the GIα, we show in the present paper that the GIα with a real α value also gives an extremely good estimate of the true frequency from the sinα ( X)-apodized spectra. Thus, we intend to apply the GIα with the optimal values of α to FFT spectra apodized by any other window functions that are often used in Fourier spectroscopy. Simulation results show that the GIα is easier and more accurate than the KCe interpolation, which uses a family of interpolating functions [ KCe(ω) = ( aω2 + bω + c)e] proposed by Keefe and Comisarow. Finally, in the presence of noise we examine effects of damping and windowing on the frequency interpolation of FFT spectra. Because damping and windowing reduce the signal-to-noise ratio (SNR), we define anew the relative SNR by the ratio of the SNR of the apodized spectrum of a damped sinusoid to the SNR of the unapodized spectrum of an undamped sinusoid. Numerical calculation shows that the relative SNR varies, owing to damping rather than windowing. In fact, the observed frequency error roughly increases as the damping ratio increases for any window functions, as is expected from our previous investigation that the frequency error based upon the GIα is inversely proportional to the SNR. However, no obvious differences between the various window functions are observed in the presence of noise.


2014 ◽  
Vol 1049-1050 ◽  
pp. 2084-2087 ◽  
Author(s):  
Rong Li

For the using of multi-modulation, the precondition of receiving and demodulating signal is to determine the type of the modulation, so automatic recognition of modulation signal has significant influence on the analysis of the signals. In this paper, digital modulation recognition is studied respectively in different environment of White Gaussian Noise (WGN), stationary interference and multipath interference. The simulation results show that the recognition success rate is the highest in stationary interference environment and the lowest in multipath interference environment with the same signal to noise ratio (SNR).


2015 ◽  
Author(s):  
Zhiyong Lu ◽  
Jianfeng Sun ◽  
Ning Zhang ◽  
Yu Zhou ◽  
Guangyu Cai ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shuangyang Li ◽  
Baoming Bai ◽  
Jing Zhou ◽  
Qingli He ◽  
Qian Li

A structure of faster-than-Nyquist (FTN) signaling combined with superposition coded modulation (SCM) is considered. The so-called FTN-SCM structure is able to achieve the constrained capacity of FTN signaling and only requires a low detection complexity. By deriving a new observation model suitable for FTN-SCM, we offer the power allocation based on a proper detection method. Simulation results show that, at any given spectral efficiency, the bit error rate (BER) curve of FTN-SCM lies clearly outside the minimum signal-to-noise ratio (SNR) boundary of orthogonal signaling with a larger alphabet. The achieved data rates are also close to the maximum data rates of the certain shaping pulse.


Author(s):  
Vitaliy V. Tsyporenko ◽  
Valentyn G. Tsyporenko

In this article, the main parameter of the correlative-interferometric direction finding method with twodimensional correlative processing of spatial signal in the aperture of a linear antenna array (AA) is determined as the value of spatial shift within the AA aperture. The corresponding objective function is also formed. Analytical optimization of this parameter is presented and a comparative analysis of analytical calculations based on simulation results is conducted. In the simulation, a range of dependencies of the middle square deviation of estimation of direction on the value of the spatial shift for a signal-to-noise ratio of 0 dB, for minimum 3-sample and 4-sample Blackman-Harris windows of the spectral analysis, is received. The value of the middle square deviation of estimation of direction will be minimal and will equal 0.02 degrees using a minimum 3-sample Blackman-Harris window with the −67 dB level of side lobes. It offers high noise immunity and high accuracy of direction finding.


Sign in / Sign up

Export Citation Format

Share Document