Study on Bond-Slip Performance of Corroded Reinforced Concrete Members

2012 ◽  
Vol 204-208 ◽  
pp. 1164-1169
Author(s):  
Yan Liang ◽  
Xiao Yong Luo ◽  
Ya Ou ◽  
Ao Zhou Wan

According to pull-off test on reinforced concrete specimens with different corrosion rate, their failure patterns, relationship between bonding strength and slippage, variation laws of bonding strength and slippage are studied. The calculating formula of reduction coefficient of bonding strength and slip ratio is proposed. Based on these studies, constitutive model of bond-slip performance for corroded reinforced concrete is set up. It can be seen after verification and analysis that calculated results of this model agree well with trial values, which suggests that the bond-slip constitutive model of this paper is reliable and universal.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Huang Tang ◽  
Jianxin Peng ◽  
Linfa Xiao ◽  
Xinhua Liu ◽  
Jianren Zhang

This paper proposes 3D nonlinear finite element (FE) models to predict the response of corroded reinforced concrete (RC) beam strengthened using a steel plate. Five FE models are developed based on the tests carried out by the authors in a previous investigation, in which three models are used to simulate the corroded RC beams with different schemes. The FE models use the coupled damaged-plasticity constitutive law for concrete in tension and compression and consider the bond-slip between the corroded tensile steel bar and concrete. The cohesive element is also used to model the cohesive bond between the steel plate and concrete. The FE results of load-deflection and the crack distribution are compared with the test data. The FE results are consistent with the test results. The influence of the thickness of the steel plate, the thickness, and location of the U-shaped steel strip on the bearing capacity of the strengthened corroded beam is analyzed through FE models. The results show that the thickness of the steel plate on the bottom surface should not exceed 4 mm for the flexure-strengthened and combined strengthened beams with a 10% corrosion rate. It is most reasonable to improve the bearing capacity using the 3 mm and 2 mm of thick U-shaped steel strips for the shear-strengthened and combined strengthened beams, respectively. The most reasonable location of the U-shaped steel plate is at the end of the steel plate for beams with a 10% corrosion rate.


2012 ◽  
Vol 19 (5) ◽  
pp. 891-902 ◽  
Author(s):  
Hakan Yalciner ◽  
Serhan Sensoy ◽  
Ozgur Eren

Corrosion is a long-term process resulting in the deterioration of the reinforced concrete (RC) structures. Most of the structural problems observed under the impact of either earthquakes or service loads might occur due to corrosion. Therefore, prediction of the remaining service life of a corroding RC structure plays an important role to prevent serious premature damage. In this study, a corroded, 25-year-old high school building which has been demolished at an earlier time was analyzed as a function of corrosion rate. Bond-slip relationships were taken into account in nonlinear analyses as a function of corrosion rate for different time periods (i.e., non-corroded (t: 0), existing (t: 25) and 50 years after construction); and they were used to ensure the effect of time-dependent slip rotation on the global structural behaviour by modifying the target post-yield stiffness of each structural member. Nonlinear push-over analyses were performed by defining the time-dependent plastic hinge properties as a consequence of corrosion effects. In order to define the performance levels of three different time periods, nonlinear incremental dynamic analyses (IDA) were performed for 20 earthquake ground motion records as a function of corrosion rate. Results showed that bond-slip relationship between concrete and steel is very important in evaluating the non-linear behaviour of corroded RC structures.


2000 ◽  
Vol 6 (5) ◽  
pp. 329-338
Author(s):  
Gintaris Kaklauskas

The paper reviews both analytical and finite element methods for deformational analysis of flexural reinforced concrete members subjected to short-term loading. In a state-of-the-art summary of various proposed stress-strain relationships for concrete and reinforcement, a special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. Empirical code methods of different countries (American Code (ACI Committee 318 [7]), the Eurocode EC2 [8], and the Russian (old Soviet) Code (SNiP 2.03.01-84 [5]) for deflection calculation of flexural reinforced concrete members are briefly described in section 2. Although these methods are based on different analytical approaches, all of them proved to be accurate tools for deflection assessment of members with high and average reinforcement ratios. It should be noted that these methods have quite a different level of complexity since the Russian Code method employs a great number of parameters and expressions whereas the ACI and EC2 methods are simple and include only basic parameters. Approaches of numerical simulation and constitutive relationships are discussed in Chapter 3. All numerical simulation research can be classified into two large groups according to two different approaches for crack modelling (subsection 3.1): 1) Discrete cracking model. In this approach, cracks are traced individually as they progressively alter the topology of the structure. 2) Smeared cracking model. The cracked concrete is assumed to remain a continuum, ie the cracks are smeared out in the continuous fashion. After cracking, the concrete becomes orthotropic with one of the material axes being oriented along the direction of cracking. Constitutive relationships for steel and plain concrete are presented in subsection 3.2. A special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. It has been concluded that although empirical design codes of different countries ensure safe design, they do not reveal the actual stress-strain state of cracked structures and often lack physical interpretation. Numerical methods which were rapidly progressing within last three decades are based on universal principles and can include all possible effects such as material nonlinearities, concrete cracking, creep and shrinkage, reinforcement slip, etc. However, the progress is mostly related to the development of mathematical apparatus, but not material models or, in other words, the development was rather qualitative than quantitative. Constitutive relationships often are too simplified and do not reflect complex multi-factor nature of the material. Existing constitutive relationships for concrete in tension do not assure higher statistical accuracy of deflection estimates for flexural reinforced concrete members in comparison to those obtained by empirical code methods. The author has developed integral constitutive model for deformational analysis of flexural reinforced concrete members [36]. The integral constitutive model consists of traditional constitutive relationships for reinforcement and compressive concrete and the integral constitutive relationship for cracked tensile concrete which accumulates cracking, tension stiffening, reinforcement slippage and shrinkage effects. This constitutive model can be applied not only in a finite element analysis, but also in a simple iterative technique based on classical principles of strength of materials extended to layered approach.


2005 ◽  
Vol 9 (4) ◽  
pp. 509-521 ◽  
Author(s):  
Khalfallah Salah ◽  
Hamimed Smail

2019 ◽  
Vol 22 (15) ◽  
pp. 3328-3340
Author(s):  
Hui Zhao ◽  
Rui Wang ◽  
Chuanchuan Hou ◽  
Dongjie Zhang

This work investigated the impact performance of hollow reinforced concrete members with inner octagonal steel tube. Experiments on 13 specimens subjected to low-velocity drop weight impact are presented in this article, covering key parameters such as the impact height, boundary condition, axial load ratio and thickness of the inner tube. The dynamic processes, failure patterns, impact force and mid-span deflection histories, and residual mid-span deflections were obtained from the experiments. Flexure-shear was observed as the main failure pattern for all the specimens under impact. It was found that all the key parameters considered had influences on the impact performance of hollow reinforced concrete specimens with inner octagonal steel tube. Effects of these parameters on the impact performance of hollow reinforced concrete members were discussed.


Sign in / Sign up

Export Citation Format

Share Document