Monitoring and Reinforcement Technology of Passing Weak and Broken Rock Strata for Tunnel Boring Machine

2012 ◽  
Vol 204-208 ◽  
pp. 2819-2823
Author(s):  
Tao Li ◽  
Kai Bin Liu ◽  
Wei Hong Yang ◽  
Bo Liu ◽  
Ying Chao Liu

The stability control of surrounding rock is a relatively important problem in tunnel boring machine (TBM) construction. The tunnel convergence deformation value was monitored in field while TBM passing weak and broken section of hydraulic tunnel. The correlation between tunnel convergence and surrounding rock stability is analyzed. The monitoring results show that: the characteristic of weak and broken Strata is closely correlated with some geological conditions, such as fault development, intrusive contact of orthophyre and lamprophyre veins. These supporting measures can well ensure the stability of surrounding rock in weak and broken section, such as sealing the inverted arch by using concrete of C25,reinforcing the inverted arch by steel arch of I10 and anchor construction in the roof. There is great difference between the properties of the weak and broken rocks on both sides, which is the main reason of the large tunnel convergence deformation. The monitoring results can provide reference for similar engineering in the future.

2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2014 ◽  
Vol 577 ◽  
pp. 1135-1138
Author(s):  
Bing He ◽  
Guang Zhi Yin

This paper combines the geological condition of Miaoziwan tunnel and numerical simulation software ANSYS to analyze the displacement and stress condition of surrounding rock before and after the excavation. Furthermore, the stability of overlying rock in the tunnel was studied based on the displacement and stress condition of surrounding rock. The breaking law of overlying rock was studied considering the influencing factors to the stability of surrounding. The study and analysis to the breaking law of overlying rock can be helpful to the improvement of surrounding rock stability control and supporting system. Moreover, the result can be the guidance to the excavation.


2014 ◽  
Vol 875-877 ◽  
pp. 2259-2263 ◽  
Author(s):  
Yao Bin Li

The floor heave is one of the key issues of surrounding rock stability control during the deep well mining process. To solve the problem about floor heave occupying the most of roof and floor convergence deformation, the author analyzed the engineering geological conditions of broken surrounding rock and the floor heave features in PanEr Coal Mine East 2 mining area when it through the fault zone with high pressure. It pointed out that we should make full use of the reinforcement of the roof and laneway's side to limit the deformation of the floor, and make use of overbreak, prestressed anchor cable, bottom corner bolt, deep hole grouting and backfill as direct bottom control countermeasures.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yongliang He ◽  
Mingshi Gao ◽  
Xu Dong ◽  
Xin Yu

With the increasing mining depth of coal mines, the occurrence of rockburst, especially in mine roadways, is becoming critical as a severe dynamic disaster. This paper explores the stability control of deep mine roadways and solves the contradiction between the support and pressure relief of roadways by studying the use of an internal steel pipe for wall protection and a soft structure for energy absorption during repeated borehole drilling. Numerical simulations are performed to examine the effects of active support technology on the support structure during repeated drilling. Internal steel pipes can effectively prevent the support structure from being damaged. When the soft structure cracks, the energy transmitted from the rockburst to the roadway is significantly reduced. According to the deformation and failure characteristics of the surrounding rock of the 21170 roadway, the combination of anchor active support, hydraulic lifting shed support, and soft structure energy absorption is proposed. An engineering case study shows that the support method can effectively maintain the stability of the surrounding rock and ensure the safe mining of the working face. The proposed control method can provide reference for the prevention and control of rockburst in mine roadways under similar geological conditions.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401875472 ◽  
Author(s):  
Wei Sun ◽  
Xiaobang Wang ◽  
Maolin Shi ◽  
Zhuqing Wang ◽  
Xueguan Song

A multidisciplinary design optimization model is developed in this article to optimize the performance of the hard rock tunnel boring machine using the collaborative optimization architecture. Tunnel boring machine is a complex engineering equipment with many subsystems coupled. In the established multidisciplinary design optimization process of this article, four subsystems are taken into account, which belong to different sub-disciplines/subsytems: the cutterhead system, the thrust system, the cutterhead driving system, and the economic model. The technology models of tunnel boring machine’s subsystems are build and the optimization objective of the multidisciplinary design optimization is to minimize the construction period from the system level of the hard rock tunnel boring machine. To further analyze the established multidisciplinary design optimization, the correlation between the design variables and the tunnel boring machine’s performance is also explored. Results indicate that the multidisciplinary design optimization process has significantly improved the performance of the tunnel boring machine. Based on the optimization results, another two excavating processes under different geological conditions are also optimized complementally using the collaborative optimization architecture, and the corresponding optimum performance of the hard rock tunnel boring machine, such as the cost and energy consumption, is compared and analysed. Results demonstrate that the proposed multidisciplinary design optimization method for tunnel boring machine is reliable and flexible while dealing with different geological conditions in practical engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2018 ◽  
Vol 175 ◽  
pp. 04016
Author(s):  
NIU Yan ◽  
Ji Yafei ◽  
Wang Zhao

Tunnel excavation will lead to the immediate surrounding rock unloading caused by the surrounding rock stress release, the stability of the surrounding rock have a certain impact. In this paper, finite element software ANSYS and finite difference software FLAC3D are used to simulate the excavation and lining process of circular tunnel. The influence of excavation on the rock stability around circular tunnel is analyzed, and the effect of applying lining on the stability of surrounding rock is analyzed. Evaluation criteria selection hole displacement, stress and plastic area of three factors.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Peilin Gong ◽  
Tong Zhao ◽  
Kaan Yetilmezsoy ◽  
Kang Yi

This study aimed to explore the safe and efficient top-coal caving mining under thin topsoil of shallow coal seam (SCS) and realize the optimization of hydraulic support. Numerical simulation and theoretical analysis were used to reveal the stress distribution of the topsoil, the structure characteristics of the main roof blocks, and the development of the roof subsidence convergence. Step subsidence of the initial fractured main roof after sliding destabilization frequently existed, which seriously threatened the safety of the hydraulic supports. Hence, a mechanical model of the main roof blocks, where the topsoil thickness was less than the minimum height of the unloading arch, was established, and the mechanical criterion of the stability was achieved. The working resistance of the hydraulic support was calculated, and the reasonable type was optimized so as to avoid crushing accident. Findings of the present analysis indicated that the hydraulic support optimization was mainly affected by fractured main roof blocks during the first weighting. According to the block stability mechanical model based on Mohr–Coulomb criterion, the required working resistance and the supporting intensity were determined as 4899 kN and 0.58 MPa, respectively. The ZZF5200/19/32S low-position top-coal caving hydraulic support was selected for the studied mine and support-surrounding rock stability control of thin-topsoil SCS could be achieved without crushing accident.


Sign in / Sign up

Export Citation Format

Share Document