Experimental Research of Reclamation Performance of Recycled Asphalt Pavement Material at Weihai Area

2012 ◽  
Vol 204-208 ◽  
pp. 3712-3715
Author(s):  
Ben Hui Gong ◽  
Hong Jie Ji ◽  
Peng Jie Wang

Based on the recycled asphalt pavement material rooted out during road net reconstruction, this paper uses modified rejuvenating agent technology to study the reclamation performance of recycled asphalt pavement material, the mixture is AC-16 designed with new and old asphalt mixture. The results show that modified rejuvenating agent technology can improve the high temperature stability performance, the low temperature crack resistance performance and the moisture susceptibility performance of recycled asphalt pavement material effectively.

2010 ◽  
Vol 168-170 ◽  
pp. 351-356 ◽  
Author(s):  
Qing Jun Ding ◽  
Zheng Sun ◽  
Fan Shen ◽  
Shao Long Huang

The volume parameter of matrix asphalt mixture is an important target in the design of the semi-flexible pavement. The research used volume-standar to design four kinds of matrix asphalt mixture, fulfilled mechanics performances and performances of semi-flexible pavement material with different aging, compared with common asphalt mixture and researched the effect by air void and pore structure. It proves that the compacted intensity, high-temperature stability and low temperature bend of the semi-flexible pavement material is better than common asphalt pavement material, the performances of matrix asphalt mixture with high air void is better. As for matrix asphalt mixture with same air void but different pore structure, the performances of homogenous grade design is prior to consecutive grade disign.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2013 ◽  
Vol 361-363 ◽  
pp. 1655-1658
Author(s):  
Xiao Li Li ◽  
Qing Zhou Wang ◽  
Shu Yan Liu

Because of the heating limitation of old pavement and the restriction of climate, the quality of hot in-place recycled pavement was different to control. The warm m,ix asphalt technology was introduced to improve the heterogeneity and compactness of the hot in-place recycled pavement and decrease its construction temperature. The compaction characteristics of warm in-place recycled asphalt mixture were analyzed and its molding temperature was determined through the Marshall test. The pavement performance of warm in-place recycled asphalt mixture was analyzed whose results indicated that the introduction of warm mix asphalt technology was able to improve the compactness, the high temperature stability and water stability of hot in-place recycled asphalt mixture and reduce the influence of environment over its construction quality. A warm in-place recycled engineering of Shian expressway was introduced to verify the feasibility of warm in-place recycling technology which demonstrated that the warm in-place recycling technology was able to improve the heterogeneity and compaction quality of the recycled pavement and weaken the environmental pollution.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3603 ◽  
Author(s):  
Wenhuan Liu ◽  
Hui Li ◽  
Huimei Zhu ◽  
Pinjing Xu

Steel slag is an industrial solid waste with the largest output in the world. It has the characteristics of wear resistance, good particle shape, large porosity, etc. At the same time, it has good adhesion characteristics with asphalt. If steel slag is used in asphalt pavement, it not only solves the problem of insufficient quality aggregates in asphalt concrete, but can also give full play to the high hardness and high wear resistance of steel slag to improve the performance of asphalt pavement. In this study, a steel slag aggregate was mixed with road petroleum asphalt to prepare a permeable steel slag–asphalt mixture, which was then compared with the permeable limestone–asphalt mixture. According to the Technical Regulations for Permeable Asphalt Pavement (CJJT 190-2012), the permeability, water stability, and Marshall stability of the prepared asphalt mixtures were tested and analyzed. In addition, the high-temperature stability and expansibility were analyzed according to the Experimental Regulations for Highway Engineering Asphalt and Asphalt Mixture (JTG E20-2011). The chemical composition of the steel slag was tested and analyzed by X-ray fluorescence spectrometer (XRF). The mineral composition of the steel slag was tested and analyzed by X-ray diffractometer (XRD). The asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the steel slag asphalt permeable mixture had good permeability, water stability, and Marshall stability, as well as good high-temperature stability and a low expansion rate. The main mineral composition was ferroferric oxide, the RO phase (RO phase is a broad solid solution formed by melting FeO, MgO, and other divalent metal oxides such as MnO), dicalcium silicate, and tricalcium silicate. In the main chemical composition of steel slag, there was no chemical reaction between aluminum oxide, calcium oxide, silicon dioxide, and asphalt, while ferric oxide chemically reacted with asphalt and formed new organosilicon compounds. The main mineral composition of the steel slag (i.e., triiron tetroxide, dicalcium silicate, and tricalcium silicate) reacted chemically with the asphalt and produced new substances. There was no chemical reaction between the RO phase and asphalt.


2014 ◽  
Vol 694 ◽  
pp. 118-122
Author(s):  
Jie Xiao ◽  
Zhi Fan Mo ◽  
Hong Xin Lu ◽  
Xian Yuan Tang

A series of laboratory tests on warm-mix AC-13 dense gradation asphalt mixture with 3% EC120 were carried out by the method of identical volume. A comparative analysis of common hot asphalt mixture was performed. The results indicate that the reduction of compaction temperature of warm-mix modified bitumen mixture is 27.1°C with addition of 3% EC120. The road performances of warm-mix asphalt mixture determined by the method of identical volume satisfied the specification. Compared to the common hot asphalt mixture, the warm-mix modified asphalt mixture has excellent high temperature stability, slightly low moisture susceptibility and better low-temperature crack resistance.


Sign in / Sign up

Export Citation Format

Share Document