The Performance Analysis of Semi-Flexible Pavement by the Volume Parameter of Matrix Asphalt Mixture

2010 ◽  
Vol 168-170 ◽  
pp. 351-356 ◽  
Author(s):  
Qing Jun Ding ◽  
Zheng Sun ◽  
Fan Shen ◽  
Shao Long Huang

The volume parameter of matrix asphalt mixture is an important target in the design of the semi-flexible pavement. The research used volume-standar to design four kinds of matrix asphalt mixture, fulfilled mechanics performances and performances of semi-flexible pavement material with different aging, compared with common asphalt mixture and researched the effect by air void and pore structure. It proves that the compacted intensity, high-temperature stability and low temperature bend of the semi-flexible pavement material is better than common asphalt pavement material, the performances of matrix asphalt mixture with high air void is better. As for matrix asphalt mixture with same air void but different pore structure, the performances of homogenous grade design is prior to consecutive grade disign.

2012 ◽  
Vol 204-208 ◽  
pp. 3712-3715
Author(s):  
Ben Hui Gong ◽  
Hong Jie Ji ◽  
Peng Jie Wang

Based on the recycled asphalt pavement material rooted out during road net reconstruction, this paper uses modified rejuvenating agent technology to study the reclamation performance of recycled asphalt pavement material, the mixture is AC-16 designed with new and old asphalt mixture. The results show that modified rejuvenating agent technology can improve the high temperature stability performance, the low temperature crack resistance performance and the moisture susceptibility performance of recycled asphalt pavement material effectively.


2020 ◽  
Vol 12 (7) ◽  
pp. 2966 ◽  
Author(s):  
Chao Chai ◽  
Yong-Chun Cheng ◽  
Yuwei Zhang ◽  
Yu Chen ◽  
Bing Zhu

This paper focuses on the freeze-thaw cycles (F-T cycles) resistance of porous asphalt mixture (PAM) with different air voids in order to explore the gradation of the PAM suitable for seasonal freezing regions. Three sets of PAMs with 18%, 21%, and 25% air voids were designed. After 0–20 F-T cycles, the effects of F-T cycles on the performance degradation of three groups of PAMs were studied by performing a low-temperature splitting test with acoustic emission technology, a normal temperature splitting test, a compression test, a Cantabro particle loss test, and a dynamic creep test. The results show that the damage process of PAM caused by multiple F-T cycles could be more clearly defined by acoustic emission parameters. In addition, the larger the air void, the smaller its indirect tensile strength and compression strength, and the worse its particle loss resistance and high-temperature stability, which made the adverse effect of F-T cycles more significant. Therefore, the air void of PAM used in seasonal freezing regions is suggested to be less than 21%.


2012 ◽  
Vol 5 ◽  
pp. 352-357 ◽  
Author(s):  
Ming Hao Hou ◽  
Yi Qiu Tan ◽  
Bin Hu

This paper introduces dynamic water effect into the test, develops a laboratory test device for simulating the dynamic water effect on asphalt pavement, and puts forward a test method of dynamic water effect working together with load, water and temperature. Based on this method, the high temperature stability of seven kinds of asphalt mixtures with the factors of asphalt grade, gradation and air voids are studied. The research shows that the effect of dynamic water can take adverse effect for the high temperature stability of asphalt mixture. The effect degree is different under different factors. It is the most disadvantaged when the air voids of the mixture is near 10%, the skeleton structure gradation of mixture is better than the suspended structure at the most disadvantage air voids, and the mixture made of high viscosity asphalt is more affected when the temperature is higher.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2012 ◽  
Vol 557-559 ◽  
pp. 329-333
Author(s):  
Zhong Run Zheng ◽  
Chao Zhao ◽  
Yi Feng Zhao ◽  
Pei Song

This paper introduces an asphalt mixture that mixed with different admixtures, rutting resistance agent and lignin fiber, at the same time. Rutting test and freeze-thaw splitting test are used to analyze rutting resistance on the high temperature and low temperature cracking of the asphalt mixture. The experiments with different mixes material composition are conducted to analysis various properties of the two admixtures on the mixture, especially the high temperature stability, low temperature crack resistance and the law of improvement effect. In addition, the experiments also determine the optimal asphalt content of different type of mixtures. The results showed that the single-doped KTL rutting resistance or lignin fibers have some improvement in water temperature performance of asphalt mixture, stability improvement of double-doped admixture asphalt mixture is better than the single-doped asphalt mixture, such as KTL rutting resistance agents and lignin fibers


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3488 ◽  
Author(s):  
Cai ◽  
Huang ◽  
Wu

Semi-flexible pavement (SFP) materials, with their characteristics of good high temperature stability, strong durability, and lower cost, are suitable for heavy-duty roads, but their cracking problem has hindered the development and popularization of this kind of pavement to a certain extent. In this study, engineered cementitious composites (ECC) were used to form ECC-SFP materials. The self-healing properties of ECC-SFP materials with three kinds of voids of matrix asphalt mixtures were studied. The test results showed that the fluidity and strength of the ECC mortars met the specification requirements when the water–cement ratio was 0.23 and the ECC fiber dosage was 1–2%. The flexural strength of ECC mortar is better than that of ordinary mortar. The higher the ECC fiber dosage, the higher the flexural strength. Increasing the void of the matrix asphalt mixture and the amount of ECC mortar increased the toughness of the ECC-SFP material, which was seen as an increase of the flow value. Curing conditions are key factor affecting the self-healing properties of ECC mortar and ECC-SFP materials. The self-healing effect of materials in 60 °C water is the best. When an ECC fiber dosage of 1% was used, the HImor of ECC mortar and HImix of ECC-SFP material were 27.5% and 24.8%, respectively. With the addition of ECC material, ECC-SFP material achieved a certain degree of self-healing, but this still needs to be further optimized. Studies of grouting process optimization and increasing the ECC fiber dosage are feasible directions to explore in order to improve the self-healing properties of ECC-SFP materials in the future.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3603 ◽  
Author(s):  
Wenhuan Liu ◽  
Hui Li ◽  
Huimei Zhu ◽  
Pinjing Xu

Steel slag is an industrial solid waste with the largest output in the world. It has the characteristics of wear resistance, good particle shape, large porosity, etc. At the same time, it has good adhesion characteristics with asphalt. If steel slag is used in asphalt pavement, it not only solves the problem of insufficient quality aggregates in asphalt concrete, but can also give full play to the high hardness and high wear resistance of steel slag to improve the performance of asphalt pavement. In this study, a steel slag aggregate was mixed with road petroleum asphalt to prepare a permeable steel slag–asphalt mixture, which was then compared with the permeable limestone–asphalt mixture. According to the Technical Regulations for Permeable Asphalt Pavement (CJJT 190-2012), the permeability, water stability, and Marshall stability of the prepared asphalt mixtures were tested and analyzed. In addition, the high-temperature stability and expansibility were analyzed according to the Experimental Regulations for Highway Engineering Asphalt and Asphalt Mixture (JTG E20-2011). The chemical composition of the steel slag was tested and analyzed by X-ray fluorescence spectrometer (XRF). The mineral composition of the steel slag was tested and analyzed by X-ray diffractometer (XRD). The asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the steel slag asphalt permeable mixture had good permeability, water stability, and Marshall stability, as well as good high-temperature stability and a low expansion rate. The main mineral composition was ferroferric oxide, the RO phase (RO phase is a broad solid solution formed by melting FeO, MgO, and other divalent metal oxides such as MnO), dicalcium silicate, and tricalcium silicate. In the main chemical composition of steel slag, there was no chemical reaction between aluminum oxide, calcium oxide, silicon dioxide, and asphalt, while ferric oxide chemically reacted with asphalt and formed new organosilicon compounds. The main mineral composition of the steel slag (i.e., triiron tetroxide, dicalcium silicate, and tricalcium silicate) reacted chemically with the asphalt and produced new substances. There was no chemical reaction between the RO phase and asphalt.


2011 ◽  
Vol 243-249 ◽  
pp. 4323-4327
Author(s):  
Gang Xu ◽  
Li Hua Zhao ◽  
Jing Zhao

This paper selects three different fibers: short-cut mineral fiber, mineral cotton fiber and lignin fiber, through the laboratory test to analysis the homogeneity and way-use performance of fiber SMA. Contrast test results show that the homogeneity of adding mineral cotton fiber and lignin fiber of SMA mixture is nearly at the same degree, which are all better than adding short-cut mineral fiber. Adding short-cut mineral fiber with SMA has poor water stability, but the high temperature stability is the best; At the same time, the homogeneity of the fiber asphalt mixture in this paper has a certain effect with the road performance, but impacts little with the absolute value of it.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5379
Author(s):  
Jiawen Xie ◽  
Wenke Huang ◽  
Bei Hu ◽  
Zhicheng Xiao ◽  
Hafiz Muhammad Zahid Hassan ◽  
...  

Warm-mixed reclaimed asphalt pavement (RAP) technology has been widely studied worldwide as a recycled environmental method to reuse waste materials. However, the aggregate skeleton structure of the warm-mixed reclaimed asphalt mixture is not stable because of the existence of the recycled materials. Warm-mixed recycled semi-flexible pavement material can solve the defects of the above materials. In this study, five different types of open-graded asphalt mixtures containing different contents of RAP were designed, and relevant laboratory tests were conducted to assess the road performance of the warm-mixed recycled semi-flexible pavement material. The test results indicated that the road performance of warm-mixed reclaimed semi-flexible pavement materials has good resistance to rut deformation ability. Furthermore, the materials also had good water stability and fatigue performance. The grey correlation analysis shows that the asphalt binder content has the most significant correlation with the high-temperature stability, and the correlation between RAP content and the fatigue performance was the greatest. Furthermore, the curing age has the most remarkable with the low-temperature crack resistance of the warm-mixed reclaimed semi-flexible material.


2010 ◽  
Vol 168-170 ◽  
pp. 211-216 ◽  
Author(s):  
Tian Qing Ling ◽  
Shu Guang Zhang ◽  
Xiu Lei Li

This paper used the method of spread the broken glass and light-colored stone into the asphalt mixture, then rolling to compact, to increase the brightness of the asphalt pavement in highway tunnel. Through a series of tests, we have studied the performance of the light-colored asphalt pavement, including high temperature stability, anti-sliding performance, impermeability, bond performance and the light-colored performance. Experimental studies have shown that the anti-sliding performance, high temperature stability will be lower slightly compared to ordinary asphalt concrete. Its impermeability has increased. The light-colored performance is better. At the same time, after the analysis of the experimental results we know that the improvement of light-colored performance is not only effected by the dosage of the materials, but also has a great relationship with the particle size. In general, the smaller the particle size of the materials joined, the more apparent the light-colored performance improved.


Sign in / Sign up

Export Citation Format

Share Document