Effect of Divorced Eutectic on the Liquation Crack Susceptibility of Al-Cu Alloy

2012 ◽  
Vol 217-219 ◽  
pp. 338-342
Author(s):  
Cheng Gang Yang ◽  
Qiang Zhen ◽  
Ji Jun Xin

Hot ductility testing is used to evaluate the liquation cracking susceptibility of high Strength aluminum alloy 2219, the fracture surface of hot ductility samples are inspected by SEM, the results showed that the melting point of α(Al)-CuAl2 divorced eutectic is higher than that of α(Al)- CuAl2 eutectic. The α(Al)- CuAl2 divorced eutectic is prior to melting during heating process and solidification during cooling process, so the BTR of Al-Cu alloy 2219 is narrow. The low liquation cracking susceptible and good weldability of Al-Cu alloy 2219 due to the rapidly recover the strength and ductility in elevated temperature which caused by the α(Al)-CuAl2 divorced eutectic solidification during cooling process.

2017 ◽  
Vol 707 ◽  
pp. 291-297 ◽  
Author(s):  
V.Yu. Zadorozhnyy ◽  
X. Shi ◽  
D.S. Kozak ◽  
T. Wada ◽  
J.Q. Wang ◽  
...  

Author(s):  
Nobuyuki Ishikawa ◽  
Mitsuru Okatsu ◽  
Junji Shimamura ◽  
Shigeru Endo ◽  
Nobuo Shikanai ◽  
...  

Extensive studies to develop high strength linepipes with higher deformability have been conducted. One of the key technologies for improving deformability is dual-phase microstructural control. Steel plate with ferrite-bainite microstructure can be obtained by applying Thermo-mechanical controlled processing, TMCP, made up with controlled rolling and accelerated cooling process. Low carbon-boron free steels were used to enable the ferrite formation during cooling after controlled rolling, and the accelerated cooling process with ultimate cooling rate enabled to achieve high strength of up to X120 grade. On-line heating process by induction device was also applied subsequently after accelerated cooling in order to improve Charpy energy of the base material and homogeneity of material properties in the plate. Trial production of X120 high deformability linepipe was also conducted by applying dual-phase microstructural control. Microstructural and mechanical properties of X120 linepipe are introduced in this paper.


Alloy Digest ◽  
1958 ◽  
Vol 7 (1) ◽  

Abstract APEX 417 is an aluminum-magnesium casting alloy having high strength and ductility, excellent corrosion resistance and good dimensional stability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-61. Producer or source: Apex Smelting Company.


Alloy Digest ◽  
1979 ◽  
Vol 28 (2) ◽  

Abstract ALUMINUM 5056 is a non-heat-treatable wrought aluminum-magnesium-manganese-chromium alloy possessing high strength and ductility along with good hot and cold workability. It is recommended for such applications as rivets and screen wire. It may be used with or without cladding. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-126. Producer or source: Various aluminum companies. Originally published June 1963, revised February 1979.


Alloy Digest ◽  
1986 ◽  
Vol 35 (5) ◽  

Abstract Copper Alloy No. C86100 is a copper-zinc-aluminum-manganese-iron alloy, sometimes classified as a high-strength yellow brass. The principal strengthening element is aluminum. Its tensile strength is typically 95,000 psi (655 MPa). It has a good combination of strength and ductility along with good resistance to corrosion. Its typical uses are marine castings, gears, gun mounts, bearing and bushings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-510. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1985 ◽  
Vol 34 (7) ◽  

Abstract Copper Alloy No. C86700 is a free-machining, high-tensile (typically 85,000 psi) cast manganese bronze; it is also known as high-strength yellow brass. It has an excellent combination of strength and ductility and good resistance to corrosion in numerous environments, including seawater. Typical uses are valve stems, moderate-duty gears and marine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-499. Producer or source: Copper alloy foundries.


Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 262-267
Author(s):  
Junheng Gao ◽  
Suihe Jiang ◽  
Huairuo Zhang ◽  
Yuhe Huang ◽  
Dikai Guan ◽  
...  

Author(s):  
Bolun Han ◽  
Chengcheng Zhang ◽  
Kai Feng ◽  
Zhuguo Li ◽  
Xiancheng Zhang ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document