Study on the Properties of Melt Spinning PAN/MWNTs Composite Fibers

2012 ◽  
Vol 217-219 ◽  
pp. 567-570
Author(s):  
Dan Wang ◽  
Ke Qing Han ◽  
Wen Hui Zhang ◽  
Bin Yan ◽  
Yin Cai Tian ◽  
...  

Polyacrylonitrile(PAN)/multi-walled carbon nanotubes (MWNTs) composite fibers were prepared by melt spinning using ionic liquids (ILs) as a plasticizer. The effects of different MWNTs contents on the morphology, mechanical and conductive properties of the composite fibers were discussed. The results showed that property improvements have occurred with the adding of MWNTs. When the content of MWNTs reached 10%, the conductivity of PAN/MWNTs was 8.65×10-3 S/cm.

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1099 ◽  
Author(s):  
Qiuping Li

Ionogels refer to an emerging composite material made from the confinement of ionic liquids within some specific cross-linked network matrices. They have potential applications in areas such as electrochemical and optical-electric materials. Incorporation of lanthanide (Eu3+, Tb3+) complexes covalently functionalized multi-walled carbon nanotubes (MWCNTs) in ionogels provide new ideas to design and synthesize novel luminescent hybrid materials that have excellent characteristics of luminescence and ionic conductivity. Here, the multifunctional ionogels were synthesized by confining an ionic liquid and the rare earth functionalized MWCNTs in the cross-linked polymethyl methacrylate (PMMA) networks, resulting in a novel optical/electric multifunctional hybrid material. The SEM images and digital photographs suggest that the lanthanide functionalized MWCNTs are evenly dispersed in the hybrid matrices, thus leading to a certain transparency bulky gel. The resulting ionogels exhibit certain viscosity and flexibility, and display an intense red/green emission under UV-light irradiation. The intrinsic conductibility of the embedded ionic liquids and carbon nanotubes in conjunction with the outstanding photoluminescent properties of lanthanide complexes makes the soft hybrid gels a material with great potential and valuable application in the field of optical-electric materials.


2013 ◽  
Vol 1552 ◽  
Author(s):  
Jeffrey R. Alston ◽  
Dylan Brokaw ◽  
Colton Overson ◽  
Thomas A. Schmedake ◽  
Jordan C. Poler

ABSTRACTSupercapacitor devices promise to be an effective means of storing energy, and delivering power for personal electronics, remote sensors, and transportation.1, 2 Rare earth metals, such as ruthenium, have been used and report high value of capacitance, specific power, and energy.4 Nevertheless, the rarity of such metals prevent their practical use. In this study we utilize an earth-abundant nickel and a controlled microwave synthesis to create nickel oxide (NiO) with an optimal nanostructure for capacitance. To surpass the lofty series resistance associated with metal oxides such as NiO, we exploit the conductive properties of single and multi-walled carbon nanotubes. The carbon nanotubes and NiO can benefit from the presence of each other by preventing unnecessary aggregation.


RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2186-2192 ◽  
Author(s):  
Zeming Jiang ◽  
Danni Chen ◽  
Yongqi Yu ◽  
Jiaojiao Miao ◽  
Yang Liu ◽  
...  

A co-dispersion of cellulose and MWCNTs was prepared in a TBAA/DMSO solvent mixture and then used to prepare composite fibers.


Carbon ◽  
2009 ◽  
Vol 47 (14) ◽  
pp. 3313-3321 ◽  
Author(s):  
A. Das ◽  
K.W. Stöckelhuber ◽  
R. Jurk ◽  
J. Fritzsche ◽  
M. Klüppel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document