Research of the Wind Power’s Transient Stability

2012 ◽  
Vol 229-231 ◽  
pp. 1043-1046 ◽  
Author(s):  
Yuan Zhou ◽  
Zhi Jie Wang ◽  
San Ming Liu ◽  
Xia Sun

The purpose of this paper is to improve the transient stability of wind power system. This paper presents a new DFIG control strategy, The strategy achieve the decoupling of reactive power and active power. In order to improve the transient stability of wind power, here lead STATCOM into wind power system. Then put forward the STATCOM'S control strategy according it's mathematical model. The simulation result shows that, the proposed scheme can greatly improve the wind power system's transient stability.

2014 ◽  
Vol 986-987 ◽  
pp. 635-638
Author(s):  
Li Sa Guo

Analyzed mathematical model of wind power which consist doubly-fed wind turbine (DFIG).Strategies for pitch angle control were developed.Used MATLAB to establish equivalent model contain infinite power system concluding DFIG ,The results showed that wind power with DFIG have good transient stability.


2011 ◽  
Vol 317-319 ◽  
pp. 1778-1782 ◽  
Author(s):  
You Jie Ma ◽  
Jin Hua Liu ◽  
Xue Song Zhou ◽  
Ji Li

As a new dynamic reactive compensation devices, static synchronous compensator (STATCOM) has better reactive power compensation effect such as small in size, capacity, continuous adjusting, fast response and economic performance compared with SVC. It is suitable to be used in large-scale wind farm to improve the voltage stability of wind power system. With the help of ideas and methods in conventional electric power system to calculate the two-dimensional parameter bifurcation boundary, the node voltage two-dimensional saddle-node bifurcation boundary of wind power system was calculated by using wind farm active power inject(Pin ),STATCOM parameters KMdc and Vrefdc as bifurcation control parameters. And on the basis of this analysis, the laws of wind power system voltage stability affected by active power and STATCOM parameters were obtained.


2012 ◽  
Vol 588-589 ◽  
pp. 574-577 ◽  
Author(s):  
Yan Juan Wu ◽  
Lin Chuan Li

Some faults will result wind turbine generators off-grid due to low grid voltage , furthermore, large-scale wind farms tripping can result in severe system oscillation and aggravate system transient instability . In view of this, static compensator (STATCOM) is installed in the grid containing large-scale wind farm. A voltage feedforward control strategy is proposed to adjust the reactive power of STATCOM compensation and ensure that the grid voltage is quickly restored to a safe range. The mathematical model of the doubly-fed induction wind generator (DFIG) is proposed. The control strategy of DFIG uses PI control for rotor angular velocity and active power. 4-machine system simulation results show that the STATCOM reactive power compensation significantly improve output active power of large-scale wind farm satisfying transient stability, reduce the probability of the tripping, and improve the utilization efficiency of wind farms.


2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.


Sign in / Sign up

Export Citation Format

Share Document