Simulation Analysis of the Counterbalance Valve Used in Cranes Based on AMESim Software

2012 ◽  
Vol 233 ◽  
pp. 55-61 ◽  
Author(s):  
Xu Ji ◽  
Xin Hui Liu

This paper presents the structure and working principle of counterbalance valve used in some hydraulic cranes. Based on the AMESim software, the model of the counterbalance valve is build, and the simulation analysis for its performances is done. The simulation results show that the valve has a good dynamic response performance and stability, its control spool opening is independent of the load, and the main concerned structural parameters can affect the performance of the counterbalance valve.

2014 ◽  
Vol 644-650 ◽  
pp. 3844-3849
Author(s):  
Yu Shu Lai ◽  
Yan Xiong ◽  
Sheng Rong Zhong ◽  
Jian Xiong

A new type of substrate structure Electronic Enhance Collector IGBT (EEC-IGBT) was proposed, and the working principle was introduced in this paper. Compared with conventional IGBT, the substrate of EEC-IGBT was divided by the groove structure composed of oxide and aluminum. Finally, simulation analysis about the EEC-IGBT performance influence by structural parameters was given. The simulation results showed that the turn-off loss of EEC-IGBT was reduced 30% compared with CS-IGBT in the same condition voltage.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012006
Author(s):  
Bin Li ◽  
Guyang Li ◽  
Wangyang Wu ◽  
Xue Zhang ◽  
Song Guo ◽  
...  

Abstract In this paper, the electro-hydraulic control valve commonly used in ships is taken as the research object, the working principle of the valve is introduced, the model of the valve is established by AMESim software, the model parameters are set and the simulation analysis is carried out. By changing the relevant parameters of the valve, the response speed of the valve can be improved. The simulation results show that the pressure area of load sensitive cavity and the diameter of damping hole have obvious influence on the response speed of valve.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012037
Author(s):  
Hanchao Liu ◽  
Anxin Guo ◽  
Xuezhi Wang

Abstract To study the dynamic response of a certain type of co-frame launcher during launch, this article uses the 3D modeling software Pro/E to import the model into Adams from the perspective of launch dynamics. the launch dynamics model of the shared-frame launcher is established. We apply the ejection thrust of the two types of missiles to the corresponding ejection devices and measure and collect the dynamic parameters of the cartridge system. The simulation results show that the dynamic parameters of the A and B missiles are in line with the available overload design requirements. The B-type missiles are superior to the A-type missiles in terms of ballistic orbit contact force and ejection attitude.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Shizhong Ma ◽  
Mingming Wang ◽  
Xiaohui Li

This article first introduces the significance of studying space optical communication and the current research status at home and abroad, and gives a general discussion on the application prospects and development trends of space optical communication, and elaborates the necessity and importance of conducting optical communication research. Then, the working principle of ATP in space optical communication system is studied, the mathematical model of ATP control system is established according to the actual needs, and the ATP control system design of space optical communication is designed. By selecting appropriate motors and gyroscopes as the actuators and detection elements of the system, substituting the actual parameters for simulation analysis, and correcting and verifying the results, some useful results are obtained. The simulation results show the rationality and effectiveness of the ATP design scheme.


2021 ◽  
pp. 146808742199698
Author(s):  
Lyu Xiuyi ◽  
Abdullah Azam ◽  
Wang Yuechang ◽  
Lu Xiqun ◽  
Li Tongyang ◽  
...  

The piston ring-cylinder liner (PRCL) is one of the most important parts of marine diesel engines and contributes 25% to 50% of total friction loss. The lubrication simulation analysis of the PRCL system is a challenging task. Complete understanding and precise prediction of lubrication loads is a key to understanding the friction behavior of PRCL systems as the accuracy of the friction prediction depends upon precise prediction of lubrication loads. Therefore, this paper focuses on the gas pressure calculation which is the primary source of lubrication loads. The procedure presented combines the advantages of two mainstream methods to predict loads in the PRCL system. The result is a significant reduction in the computation time without compromising on accuracy. Firstly, a comparison of both approaches is presented which suggests that each technique has its limitations (one is time-bound, and one is accuracy-bound). Then, the results from both calculation methods are verified against literature and a parametric study is performed to identify the key structural parameters of PRCL system that affect the calculation efficiency. Finally, a correlation coefficient is introduced into the analysis to combine the two approaches which then identifies the conditions under which the use of the faster method becomes invalid and replaces it with the more accurate approach. This ensures optimum performance of the calculation procedure by switching between the fast and the accurate method depending upon the accuracy requirement under given conditions, thereby, simplifying the dynamic and lubrication model of PRCL systems. The study has direct implications for the tribological design of the PRCL interface.


2016 ◽  
Vol 842 ◽  
pp. 251-258 ◽  
Author(s):  
Muhammad Rafi Hadytama ◽  
Rianto A. Sasongko

This paper presents the flight dynamics simulation and analysis of a tilt-rotor vertical takeoff and landing (VTOL) aircraft on transition phase, that is conversion from vertical or hover to horizontal or level flight and vice versa. The model of the aircraft is derived from simplified equations of motion comprising the forces and moments working on the aircraft in the airplane's longitudinal plane of motion. This study focuses on the problem of the airplane's dynamic response during conversion phase, which gives an understanding about the flight characteristics of the vehicle. The understanding about the flight dynamics characteristics is important for the control system design phase. Some simulation results are given to provide better visualization about the behaviour of the tilt-rotor. The simulation results show that both transition phases are quite stable, although an improved stability can give better manoeuver and attitude handling. Improvement on the simulation model is also required to provide more accurate and realistic dynamic response of the vehicle.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1163
Author(s):  
Yajun Yu ◽  
Liangshan Li ◽  
Jiale Zhao ◽  
Xiangeng Wang ◽  
Jun Fu

This paper takes a local drum-type corn thresher as an example. In order to make the threshing principle transform to the plate-tooth type, the width of the spike-tooth threshing component is increased gradually, and three threshing components of different shape and size are selected as the research objects. Based on the preliminary experimental research, the corn threshing process is simulation analyzed using the self-developed corn threshing process analysis software. The effects of the width of the threshing component on the corn ears threshing rate and kernel damage rate under different rates of drum rotation were studied from a macroscopic perspective. The results show that with the increase of drum rotation rate, both the corn ear threshing rate and kernel damage rate increase; with the increase of threshing component width, the threshing rate increases and the damage rate decreases; and when the component width is too large, the stacking between adjacent components has an impact on the threshing performance. The effects of threshing component width on the amount of kernel threshing and the total compressive force during the simulation time were investigated from microscopic perspective at different rates of drum rotation, and the results show that the microscopic analysis is consistent with the macroscopic analysis. Therefore, the optimization of the structural parameters and operating parameters of the threshing component was achieved. When the width of the threshing component was 25 mm and the roller speed was 187.50 rpm, the threshing performance was optimal, with a 98.04% corn ears threshing rate and a 2.56% kernel damage rate. This paper verifies the practical applicability of the corn threshing process analysis software and provides a reference for the optimal design of threshing devices.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


2011 ◽  
Vol 211-212 ◽  
pp. 384-388
Author(s):  
Gui Mei Guo ◽  
Lin Hong

Sight-stabilizing mechanisms controlled by diaphragm springs and other damping elements is an important subordinate system of airborne sight stabilizing System. The performances of sight-stabilizing system depend on the characteristics of kinematics and dynamics of the system in a great extent. Among various external moments acting on the rod of the manipulator, such as those moments caused by damper, positioning spring, and restoration spring, the forces by diaphragm springs are most obvious. According to the structure form and motion peculiarity, the rod can be equivalent to a rigid body turning around a fix point. Simulation results reveal that the moment of the restoration spring to the rod is proportional to the angular displacement, and that the moment is the most prominent factor influencing the operating performances among all these moments. Through reasonable adjustments of structural parameters of the restoration spring, the performances of the sight-stabilizing system can be improved greatly; the analysis method provides a basis for guiding the design of concerned structural parameters of sight-stabilizing system.


Sign in / Sign up

Export Citation Format

Share Document