Numerical Simulation of Rural Brick Buildings Strengthened with CFRP under Flood Actions

2012 ◽  
Vol 238 ◽  
pp. 223-226
Author(s):  
Yong Jun Liu ◽  
Xing Tao Ma ◽  
Yong Mei Sun

In China, floods often cause life and property losses due to heavily damage and collapse of rural buildings. It is very important to conduct comprehensive research on flood behavior of rural buildings. In this paper, formula of hydrodynamic load imposed on building by flowing flood is derived based on conservation of momentum and test results firstly. Secondly, the finite element analysis of rural brick buildings strengthened with CFRP under flood actions is conducted using ANSYS software to check the effect of CFRP. Simulation results demonstrate that the formula of hydrodynamic pressure and the numerical model of rural buildings are of high accuracy, and can be referenced for further study and applied in engineering practices.

2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shuai Gao ◽  
Guoqing Zhu ◽  
Yunji Gao ◽  
Guoqiang Chai ◽  
Jinju Zhou

In this paper, the finite element analysis was firstly employed to investigate the thermal analysis on two fireproof sealing models with ANSYS software under HC standard temperature-time condition. The main thermal parameters were analyzed and obtained, including temperature field, thermal flux, and thermal gradient. After comparing the two fireproof sealing models, the major conclusions are summarized as follows: In terms of temperature field, the temperature on the left side of the first model ranges from 60 to 524°C in. In contrast, the highest temperature on the left side of the second model eventually reaches below 151°C. Moreover, the vectors of thermal gradient in the first model are compared with the second model, and the temperature gradient disturbance is more obvious in the second fireproof sealing model, which is better to slow down temperature spreading. The accelerated speed of E1 and G1 is 0.0096°C/s and 0.0619°C/s partly, which are far more than C2 and F2 with values of 0.0028°C/s and 0.0078°C/s, respectively. In a word, the performance of the first fireproof sealing model is inferior to the second fireproof sealing model. The conclusions of the study are meaningful to improve the thermodynamic performance of the fireproof sealing in the converter station.


2012 ◽  
Vol 594-597 ◽  
pp. 2655-2658
Author(s):  
Zhen Dong Tan ◽  
Zun Feng Du ◽  
Jian Zhang ◽  
Chao He ◽  
Wei Guo Wu

One of the problems in installing cableway is the estimation of the tension. The mechanical model of coastal shore-to-ship transmission cableway was analyzed with catenary algorithm, compared with the finite element analysis of ANSYS software. The result shows that the tension and its changing amplitude are both gradually decreasing with the increase of the deflection. And, if the deflection is determined, the tension is decreasing with the increase of cableway’s span. These analysis results and conclusions can give the basis to safe installation of the cableway.


2014 ◽  
Vol 590 ◽  
pp. 312-315
Author(s):  
Wei Hong Xuan ◽  
Pan Xiu Wang ◽  
Yu Zhi Chen ◽  
Xiao Hong Chen

The dry shrinkage deformation of polypropylene fiber mortar was analyzed by ANSYS software and compared with experiment value in this paper. The error of the calculated and experimental results in the 14 days and 28 days are 7.8% and 10.5%. It can be found that the calculated results are in good agreement with test results. The results indicate that the dry shrinkage value of polypropylene fiber mortar is lower than ordinary mortar. Adding polypropylene fibers can inhibit the process of cracking and improve the fracture toughness of cement-based materials.


2009 ◽  
Vol 09 (01) ◽  
pp. 85-106
Author(s):  
N. PRASAD RAO ◽  
S. J. MOHAN ◽  
R. P. ROKADE ◽  
R. BALA GOPAL

The experimental and analytical behavior of 400 kV S/C portal-type guyed towers under different loading conditions is presented. The portal-type tower essentially consists of two masts extending outward in the transverse direction from the beam level to the ground. In addition, two sets of guys connected at the ground level project outward along the longitudinal axes and converge in the transverse axes. The experimental behavior of the guyed tower is compared with the results of finite element analysis. The 400 kV portal-type guyed towers with III and IVI type insulator strings are analyzed using finite element software. Full scale tower test results are verified through comparison with the results of the finite element analysis. The initial prestress in the guys is allowed to vary from 5% to 15% in the finite element modeling. The effect of prestress variation of the guys on the tower behavior is also studied.


2013 ◽  
Vol 416-417 ◽  
pp. 1813-1817
Author(s):  
Ying Cai Yuan ◽  
Qin Qin Jia ◽  
Zi Yaun Shi

The design of fold cutter influences the precision, velocity and stability of the web press folder. For the variable structure of fold cutter, its hard to solve the status of the stress and distortion by the normal mechanical method. But by the finite element analysis and ANSYS software, its convenience to solve this problem based on the reasonable analysis of the load in working state. It can supply the favorable bases to the design of web presss fold cutter by analysis the stress and distortion. In the example, the conclusion can be gotten that the intensity of fold cutter meet the requirements sufficiently, but the stiffness is insufficient softly, which influences the folding precision.


Author(s):  
Mira K. Sahney

The fundamental design of high pressure joints such as crosses and tees has remained the same for many years. However, the introduction of commercially available high pressure equipment operating at 600 MPa and higher has demanded improved designs for these classic connections. This study presents a new design concept for reducing the stress concentration at intersecting crossbores. Both the finite element analysis and the fatigue test results from the standard high pressure design and the new design are compared. The new approach realizes a 17–25% reduction in the stress concentration factors and a 40% improvement in fatigue life test results when compared to the standard design.


2011 ◽  
Vol 304 ◽  
pp. 115-118 ◽  
Author(s):  
Biao Zhou ◽  
Xiao Lei Deng

The CAD/CAE integration simulation technology route of bearing is established, and the parameterization numerical model of 7021 angle contact ball bearing is established by using the Solidworks software. Then the finite element analysis of bearing assembly is carried out in ANSYS software. The simulation result indicates that the bearing structural design is reasonable, and the intensity request and the dynamic stiffness of the spindle system can be satisfied. By the analysis and simulation results, the process measures which can improve the structure and increase rigidity of bearing can be proposed.


2014 ◽  
Vol 697 ◽  
pp. 173-176
Author(s):  
Hao Zou ◽  
Ming Zhang ◽  
Jia Jun Ren

In this paper, authors made contrast with the three finite element methods in analysis accuracy and usability .Those are all based on the structural analysis of mining excavator arm. The first fem is using UG solid modeling capabilities to create model .The finite element model is generated by UG_ANSYS, including setting the loads of material properties and boundary conditions ,also loading work. The process is called preprocessing completely .Then export a“. inp” file,after that, imported that file directly into ANSYS software for solving. The second one is to import solid mode created in UG into ANSYS software directly ,then take pretreatment and solution accordingly.The last one is using UG modeling and UG NX NASTRAN (the finite element analysis function) for structure analysis. It is concluded that using UG completely pretreatment of ANSYS analysis method and UG NX NASTRAN method feel more convenient to operate it with the high analyze accuracy,with the two methods , designers can modify mining mechanical arm weak positions more easily.In turns,they can improve the designing level of physical prototyping.


Sign in / Sign up

Export Citation Format

Share Document