Finite Element Analysis of Dry Shrinkage of Fiber Cement Mortar

2014 ◽  
Vol 590 ◽  
pp. 312-315
Author(s):  
Wei Hong Xuan ◽  
Pan Xiu Wang ◽  
Yu Zhi Chen ◽  
Xiao Hong Chen

The dry shrinkage deformation of polypropylene fiber mortar was analyzed by ANSYS software and compared with experiment value in this paper. The error of the calculated and experimental results in the 14 days and 28 days are 7.8% and 10.5%. It can be found that the calculated results are in good agreement with test results. The results indicate that the dry shrinkage value of polypropylene fiber mortar is lower than ordinary mortar. Adding polypropylene fibers can inhibit the process of cracking and improve the fracture toughness of cement-based materials.

2011 ◽  
Vol 328-330 ◽  
pp. 1301-1304
Author(s):  
Xue Fei Li ◽  
Tao Guo

The purpose of this paper is based on the cement-based materials by adding fibers and mineral admixtures for composite, to cement the improvement of liquidity. Experiment with the intensity level of 42.5 ordinary portland cement, by adding polypropylene fibers, slag and fly ash cement mortar as a mineral admixture, the production of cement mortar matrix for the test, were conducted on a variety of mix Fluidity test. Experiments show that the addition of polypropylene fiber is not conducive to the mobility of mortar, especially monofilament fiber was more obvious than the reticular fibers. To join the slag, fly ash, mortar fluidity increased, indicating that slag and fly ash added to improve the workability of cement-based materials. When the fiber content reaches the maximum degree of maximum flow, indicating that slag, fly ash and polypropylene fibers will increase the combined effect of fluidity value. This innovation is obtained by adding fiber cement-based materials for toughening effect, with the use of mineral admixture can improve the overall performance of cement based materials, with further research and promotion value.


2013 ◽  
Vol 419 ◽  
pp. 889-894
Author(s):  
Sheng Bing Liu ◽  
Li Hua Xu

18 different groups of hybrid fiber (steel fiber and polypropylene fiber) reinforced HPC deep beams and 2 groups of HPC deep beams without fiber were made. The shear tests under the static load and the numerical simulation by ABAQUS were conducted. Good agreement are found between test results and simulation results.The results of finite element analysis indicate that with the increment of reinforcement ratio, the shear capacity of hybrid fiber reinforced HPC deep beams increases, but quite limited. The variation of shear capacity of hybrid fiber reinforced HPC deep beams is not obvious as the shear-span ratio changes (when ) . The increment of span-depth ratio can improve the shear capacity of hybrid fiber reinforced HPC deep beams, but only with small amplitude. All these regularities are similar to those of ordinary reinforced concrete deep beams.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2021 ◽  
pp. 136943322110073
Author(s):  
Erdem Selver ◽  
Gaye Kaya ◽  
Hussein Dalfi

This study aims to enhance the compressive properties of sandwich composites containing extruded polystyrene (XPS) foam core and glass or carbon face materials by using carbon/vinyl ester and glass/vinyl ester composite Z-pins. The composite pins were inserted into foam cores at two different densities (15 and 30 mm). Compression test results showed that compressive strength, modulus and loads of the sandwich composites significantly increased after using composite Z-pins. Sandwich composites with 15 mm pin densities exhibited higher compressive properties than that of 30 mm pin densities. The pin type played a critical role whilst carbon pin reinforced sandwich composites had higher compressive properties compared to glass pin reinforced sandwich composites. Finite element analysis (FE) using Abaqus software has been established in this study to verify the experimental results. Experimental and numerical results based on the capabilities of the sandwich composites to capture the mechanical behaviour and the damage failure modes were conducted and showed a good agreement between them.


2011 ◽  
Vol 328-330 ◽  
pp. 1351-1354
Author(s):  
Jun Yong He ◽  
Xiao Qing Huang ◽  
Cheng Yu Tian

Basalt fiber has the advantages of non-pollution and omnipotence, and will be widely used in the 21st Century. Therefore, more and more attention is paid on experimental research on the basalt fiber in the world. First,according to the requirements of the fibers used in the cement-based materials, the contrast testing of the plastic shrinkage between fiber cement mortar and pure mortar was made. The experimental results showed that basalt fiber , polypropylene fiber and polyacrylonitrile fiber can be preliminarily chosen as reinforced fibers in cement-based materials. Finally, taking both characteristics of basalt fiber and the increase of cement-based materials costs into account, it can be drawn that top priority should be given to the basalt fiber rather than to other fibers for cement-based materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jikai Zhou ◽  
Pingping Qian ◽  
Xudong Chen

The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant’s size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li’s equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement.


2013 ◽  
Vol 834-836 ◽  
pp. 720-725 ◽  
Author(s):  
Hai Liang Wang ◽  
Wei Chang ◽  
Xin Lei Yang

Six reinforced concrete beams, including 4 beams strengthened with BFRP sheets at different layer of BFRP sheets and 2 control beams, are tested to investigate the effect of layer of BFRP sheets on the ultimate flexural resistance and load-deflection response of the pre-damaged concrete beams strengthened with BFRP sheets. Results show that the flexural resistance of pre-damaged concrete beams increases along with the BFRP sheets layer increasing,but the flexural resistance enhances the degree not to assume the linear relations to the enforcement layer.Numerical simulation of the pre-damaged concrete beams strengthened with BFRP sheets is conducted by ANSYS, and the results of numerical simulation are compared with those of the test results. It turns out that the results of numerical simulation are in good agreement with the test results.


2012 ◽  
Vol 238 ◽  
pp. 223-226
Author(s):  
Yong Jun Liu ◽  
Xing Tao Ma ◽  
Yong Mei Sun

In China, floods often cause life and property losses due to heavily damage and collapse of rural buildings. It is very important to conduct comprehensive research on flood behavior of rural buildings. In this paper, formula of hydrodynamic load imposed on building by flowing flood is derived based on conservation of momentum and test results firstly. Secondly, the finite element analysis of rural brick buildings strengthened with CFRP under flood actions is conducted using ANSYS software to check the effect of CFRP. Simulation results demonstrate that the formula of hydrodynamic pressure and the numerical model of rural buildings are of high accuracy, and can be referenced for further study and applied in engineering practices.


2011 ◽  
Vol 295-297 ◽  
pp. 1138-1141
Author(s):  
Na Liang ◽  
Xiao Yan Zhang ◽  
Li Sun ◽  
Feng Lan Li

Experiments were carried out to investigate the dry-shrinkage of masonry mortar affected by mass content of polypropylene fiber. The results show that proper content of polypropylene fiber is helpful to effectively reduce dry-shrinkage of mortar especially in early age, the reduction relates to water to cement ratio of mortar. Meanwhile, the relationships of water to cement ratio and content of polypropylene fiber in affecting dry-shrinkage of masonry mortar are analyzed, which can be as reference for selecting such optimum values as water to cement ratio and content of polypropylene fiber in practices.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


Sign in / Sign up

Export Citation Format

Share Document