Numerical Simulation of Arc-Type Slotted Finned Heat Exchanger

2012 ◽  
Vol 248 ◽  
pp. 140-146
Author(s):  
Ping Dao Gu ◽  
Dong Hao Liu ◽  
Jing Lu Yao

This paper is studying the fluid mechanics and heat transfer along the surface of are-type slotted fin in the finned heat exchanger by using the simulation software comsol multiphysics. The major study is the effect of the structure of fin to the fluid mechanics and heat transfer process, including the fin pitch, height of arc-type slit, the size of arc-type slit, the position of arc-type slit. And drawing the following conclusion: under the condition of low velocity, the fin pitch should be around 2.0 mm in considering the overall heat-transfer performance, and under the condition of large velocity, around 1.5 mm is better; When designing the arc-type slotted fin, the more larger the height of arc-type slit do, the better the overall heat-transfer performance; it is better if the start angle, as same as the position of arc-type slit, is less than 30°; the angle of arc-type silt ,as same as the size of arc-type slit, should be larger under the condition of meeting the demand of pressure drop.

2020 ◽  
pp. 247-247
Author(s):  
Song Chen ◽  
Haitao Wang ◽  
Kefeng Lv ◽  
Ning Hu

Buried pipe leakage can lead to poor heat transfer performance and even system failure. Leakage analysis of buried tube greatly affects the operation condition diagnosis for the heat exchange in buried tube. In this study, the simulation software was applied in analyzing heat transfer process and efficiency of the buried pipes under different leakage conditions. Moreover, changes in outlet temperature, water pressure and flow rate were simulated at different positions and diverse sizes of the leakage port. According to our results, the size of leakage port greatly affected the parameter variation of the outlet port when the system started and stopped, thus affecting the cooling effect. In addition, position of the leakage port also had obvious influence on the physical state of the outlet water.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


2012 ◽  
Vol 516-517 ◽  
pp. 316-321
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Xiao Liang Tang ◽  
Jian Ping Lei

According to the application conditions of horizontal ground heat exchanger(HGHE) under artificial lake, this paper uses numerical simulation method to do dynamic simulation research of the heat transfer performance of HGHE, analyzes the effect of connection mode and pipe flow velocity on heat transfer performance of HGHE in detail,puts forward efficient HGHE loop formation mode,and will provide effective technical support for ground-source heat pump system design with HGHE.


Sign in / Sign up

Export Citation Format

Share Document