Development of Thermal Resistance Elements for Thermal Analysis of Composite Structural Members in Fires

2012 ◽  
Vol 256-259 ◽  
pp. 2704-2708
Author(s):  
Yong Jun Liu ◽  
Yu Min Yan ◽  
Li Hong Yao ◽  
Xue Wang

Building fires, which may cause failure of buildings, occur frequently in cities all over the world. Composite structural members, such as concrete filled steel tube columns and steel-decked composite floor slabs, are being increasingly used in buildings for their dual advantage of excellent load bearing capacity and fire resistance. Because the heat transfer across a steel-concrete interface is difficult to model using ordinary elements, most existing finite element analysis models ignore the effect of thermal contact resistance. In this paper, several two- and three-dimensional new thermal resistance elements (referred as TRE for brevity), which have been embed in the special purpose finite element software TFIELD coded by authors, are proposed. Two numerical examples are given. Numerical simulating results demonstrate that the proposed thermal resistance elements are extremely effective.

2010 ◽  
Vol 163-167 ◽  
pp. 2106-2111
Author(s):  
Shan Shan Sun ◽  
Jun Hai Zhao ◽  
Xue Ying Wei ◽  
Hai Bing Xiao

The ultimate load-bearing capacities of axially-loaded steel tube composite column filled with steel reinforced concrete under three-dimensional stress based on the unified strength theory are analyzed in this paper. The influence of thickness-length ratio and scale effect are considered by introducing the reduction factor of equivalent constraints and concrete strength reduction factor, respectively. The nonlinear three-dimensional finite element analysis of the steel tube composite column filled with steel reinforced concrete is performed by the finite element software ANSYS. The numerical and the analytical results are compared with experimental results and good agreement can be observed. A series of numerical simulation technologies is studied and described in detail, such as selecting element type, defining material model of steel and concrete, establishing global finite element model with discrete reinforced bars elements, applying loads to the specimens, and setting solution controls option. The results indicate that ANSYS finite element software may well simulate the behavior of the steel tube composite column filled with steel reinforced concrete under axial compression through reasonably selecting parameters.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


2011 ◽  
Vol 368-373 ◽  
pp. 3052-3056
Author(s):  
Wei Jun Yang ◽  
Yong Da Yang

New full hall scaffolds with pulley-clip style formwork support system is adopted in the concert hall of Changsha. This paper presents the concept of the complete equivalent initial imperfection according to the characteristics of too many influential factors on the high formwork supporting frame,then makes the complete equivalent initial imperfectione equivalent to assumed equivalent horizontal load in order to ensure the safety of the frame. At the same time, it gets a three-dimensional model by the general finite element software ANSYS 10.0. Based on the results of experiment and finite element analysis, it gets the recommended value of assumed equivalent horizontal load. The study on the high formwork supporting frame with pulley-clip style provides some reference for other similar projects.


Author(s):  
Liping Wan ◽  
Wangping Dong

Abstract Ratcheting assessment by elastic-plastic stress analysis is presented in ASME VIII-2, paragraph 5.5.7. There are three criteria. The first one is strict in engineering design. It’s hard for most of structures to satisfy it. If the plastic strain in the structure is zero, it means that the material is not fully utilized and maybe the structure is unreasonable. Therefore, the second and third criteria are used much more. The first one and the third one can be observed directly and judged accurately by the finite element analysis results. The second one demands an elastic core in the primary-load-bearing boundary. It could be easily observed when the structure is axisymmetric, but hard to judge in the 3D structure. Okamoto in Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) has studied two thermal stress ratchet criteria: evaluating variations in the plastic strain increments and evaluating variations in the elastic core region, which can accurately assess ratcheting. Recent years, based on the criteria above, more researches have been performed by engineers not only from C-TDF but from all over the world. In this work, several two-dimensional structures and three-dimensional structures under particular load and displacement boundaries are performed by using finite element software ANSYS, aiming to compare the similarities and differences between the criteria in ASME VIII-2, 5.5.7.2 and those given by C-TDF. The assessment of these structures presented in this work will help engineers understand the realization of the criteria and methods in engineering design, especially how to utilize the results from ANSYS.


2018 ◽  
Vol 10 (12) ◽  
pp. 4538 ◽  
Author(s):  
Yeou-Fong Li ◽  
Habib Meda ◽  
Walter Chen

The aim of this paper was to find an optimal stiffener configuration of thin-wall tubular panels made by glass fiber reinforced polymer (GFRP) composite material, which is a low carbon emission, low life cycle cost, and sustainable material. Finite-element analysis (FEA) was used to investigate the flexural and torsional stiffness of various internally stiffened sections of thin-wall GFRP decks. These decks consist of internally stiffened tubular profiles laid side by side and bonded together with epoxy to ensure the panel acts as an assembly. Three-dimensional models of the seven proposed decks were assembled with tubular profiles of different stiffener patterns. First, the non-stiffened tube profile was tested experimentally to validate the parameters used in the subsequent numerical analysis. Then, the finite element software, ANSYS, was used to simulate the flexural and torsional behavior of the decks with different stiffener patterns under bending and torsional loads. The decks with stiffener patterns such as “O” type, “V” type, and “D” type were found to be the most effective in bending. For torsion, there was a distinct tendency for deck panels with closed shaped stiffener patterns to perform better than their counterparts. Overall, the “O” type deck panel was an optimal stiffener configuration.


2020 ◽  
Vol 198 ◽  
pp. 01029
Author(s):  
Yaohui Shen ◽  
Longbin Lin ◽  
Zhengwei Feng

The finite element software ANSYS is used to calculate the ultimate bearing capacity of ordinary beam and circular hole beam, and the results are compared with the test values made by predecessors. The value of shear transfer coefficient between cracks of reinforced concrete beam with circular hole in the abdomen in ANSYS finite element simulation is summarized. The coefficient is used to simulate the circular hole beam strengthened by steel sleeve, and it is pointed out that the steel tube is used to reinforce the circular hole beam The effect of tube reinforcement on the bearing capacity of circular hole beam is not obvious.


2013 ◽  
Vol 397-400 ◽  
pp. 568-572
Author(s):  
Hong Feng Yan ◽  
Wei Ping Wang ◽  
Xiang Yang Qi ◽  
Hui Xian Zhang ◽  
Tian Tian ◽  
...  

The paper is to study the working device of rough terrain forklift, carried out forces analysis on a typical three section telescopic boom, results indicated that the boom working in the lowest position is the most dangerous situation, Adopted the CAD software of SolidWorks to build the three dimensional models of telescopic boom, then used the FEA component of SolidWorks Simulation to carried out finite element analysis(FEA) for the working device, obtained FEA results. By the use of comparing the stress testing results with the finite element analysis results, certificated that the finite element analysis models are reasonable and the finite element method by Simulation is feasible and reliable. All of these works have very important reference value for designing and optimization of the telehandler in the future.


2013 ◽  
Vol 421 ◽  
pp. 747-750
Author(s):  
Meng Sha Liu ◽  
Ying Huang ◽  
Jin San Ju

In this paper, a three-dimensional model of a steel sculpture was analyzed by using the finite element software ANSYS. The structural static response were achieved respectively under gravity load, ice load and wind load based on wind tunnel tests with the dynamic response under earthquake action. Besides, the structural parameters such as strength and stiffness under different conditions were also got. It is hoped that the analysis of ultrahigh steel sculpture will offer some technical support for practical engineering.


Sign in / Sign up

Export Citation Format

Share Document