Ultimate Bearing Capacity Research on the Steel Tube Composite Column Filled with Steel Reinforced Concrete

2010 ◽  
Vol 163-167 ◽  
pp. 2106-2111
Author(s):  
Shan Shan Sun ◽  
Jun Hai Zhao ◽  
Xue Ying Wei ◽  
Hai Bing Xiao

The ultimate load-bearing capacities of axially-loaded steel tube composite column filled with steel reinforced concrete under three-dimensional stress based on the unified strength theory are analyzed in this paper. The influence of thickness-length ratio and scale effect are considered by introducing the reduction factor of equivalent constraints and concrete strength reduction factor, respectively. The nonlinear three-dimensional finite element analysis of the steel tube composite column filled with steel reinforced concrete is performed by the finite element software ANSYS. The numerical and the analytical results are compared with experimental results and good agreement can be observed. A series of numerical simulation technologies is studied and described in detail, such as selecting element type, defining material model of steel and concrete, establishing global finite element model with discrete reinforced bars elements, applying loads to the specimens, and setting solution controls option. The results indicate that ANSYS finite element software may well simulate the behavior of the steel tube composite column filled with steel reinforced concrete under axial compression through reasonably selecting parameters.

2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2020 ◽  
Vol 198 ◽  
pp. 01029
Author(s):  
Yaohui Shen ◽  
Longbin Lin ◽  
Zhengwei Feng

The finite element software ANSYS is used to calculate the ultimate bearing capacity of ordinary beam and circular hole beam, and the results are compared with the test values made by predecessors. The value of shear transfer coefficient between cracks of reinforced concrete beam with circular hole in the abdomen in ANSYS finite element simulation is summarized. The coefficient is used to simulate the circular hole beam strengthened by steel sleeve, and it is pointed out that the steel tube is used to reinforce the circular hole beam The effect of tube reinforcement on the bearing capacity of circular hole beam is not obvious.


2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


2012 ◽  
Vol 256-259 ◽  
pp. 2704-2708
Author(s):  
Yong Jun Liu ◽  
Yu Min Yan ◽  
Li Hong Yao ◽  
Xue Wang

Building fires, which may cause failure of buildings, occur frequently in cities all over the world. Composite structural members, such as concrete filled steel tube columns and steel-decked composite floor slabs, are being increasingly used in buildings for their dual advantage of excellent load bearing capacity and fire resistance. Because the heat transfer across a steel-concrete interface is difficult to model using ordinary elements, most existing finite element analysis models ignore the effect of thermal contact resistance. In this paper, several two- and three-dimensional new thermal resistance elements (referred as TRE for brevity), which have been embed in the special purpose finite element software TFIELD coded by authors, are proposed. Two numerical examples are given. Numerical simulating results demonstrate that the proposed thermal resistance elements are extremely effective.


2012 ◽  
Vol 490-495 ◽  
pp. 3155-3159
Author(s):  
Xiao Liu ◽  
Min Li

In order to analyze the dynamic performance of the steel tube filled with steel-reinforced concrete under dynamic loading, the paper based on finite element approximation and inverse power of the iterative algorithm, used FORTUNE language to establish the structural dynamic analysis program. Calculated the critical loads and natural period of vibration and other data of the steel tube filled with steel-reinforced concrete column, and through curve analysis, obtained the rules of the stability of steel and seismic performance on the column from the influence parameter of slenderness ratio , steel ratio , concrete strength and etc. The results show that the slenderness ratio impacts greater than other parameters, so it must be strictly controlled within a certain range; meantime, the results also prove that improving steel ratio and reduce the strength of the concrete is not significant on the earthquake action


2011 ◽  
Vol 243-249 ◽  
pp. 51-54
Author(s):  
Ya Feng Xu ◽  
Peng Ju Sun ◽  
Li Zhang

According to the existed theory foundation, the authors made a simulated analysis on mechanical properties of a connection between steel reinforced concrete filled with steel tube column and steel beam, using ABAQUS, which is a finite element software. The authors established element model reasonably, and got load- displacement curve in different axial compression ratios. According to the result, with the increasing of axial compression ratio, the elements' limit bearing capacity reduces significantly.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


Sign in / Sign up

Export Citation Format

Share Document