Numercial Simulation on Three-Dimensional Unsteady Flow in a Supercharged Boiler Gas Turbine

2012 ◽  
Vol 271-272 ◽  
pp. 1039-1043
Author(s):  
Gao Su ◽  
G.Y. Zhou ◽  
Fei Du

To the unsteady characteristic of three-dimensional flow in the gas turbine blade cascades, based on sliding mesh and a standard turbulent flow model, Fluent software was employed to solve the Reynolds averaged N-S equation. The numberical result of unsteady flow field is obtained in gas turbine cascade for supercharged marine boiler. This paper shows the axial distribution of Ma in the position of β=0 in a calculational period time, and the effect of trails to flow field characteristics. The result can provide guidelines for aerodynamic optimization design of gas turbine stage cascade.

Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nian-kun Ji ◽  
Shu-ying Li ◽  
Zhi-tao Wang ◽  
Ning-bo Zhao

The intercooled gas turbine obtained by adopting an indirect heat exchanger into an existing gas turbine is one of the candidates for developing high-power marine power units. To simplify such a strong coupled nonlinear system reasonably, the feasibility and availability of qualifying equivalent effectiveness as the only parameter to evaluate the intercooler behavior are investigated. Regarding equivalent effectiveness as an additional degree of freedom, the steady state model of a marine intercooled gas turbine is developed and its off-design performance is analyzed. With comprehensive considerations given to various phase missions of ships, operational flexibility, mechanical constraints, and thermal constraints, the operating curve of the intercooled gas turbine is optimized based on graphical method in three-dimensional performance space. The resulting operating curve revealed that the control strategy at the steady state conditions for the intercooled gas turbine should be variable cycle control. The necessity of integration optimization design for gas turbine and intercooler is indicated and the modeling and analysis method developed in this paper should be beneficial to it.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


2017 ◽  
Vol 89 (3) ◽  
pp. 444-456
Author(s):  
Lei Chen ◽  
Jiang Chen

Purpose This paper aims to conduct the optimization of the multi-stage gas turbine with the effect of the cooling air injection based on the adjoint method. Design/methodology/approach Continuous adjoint method is combined with the S2 surface code. Findings The optimization of the stagger angles, stacking lines and the passage can improve the attack angles and restrain the development of the boundary, reducing the secondary flow loss caused by the cooling air injection. Practical implications The aerodynamic performance of the gas turbine can be improved via the optimization of blade and passage based on the adjoint method. Originality/value The results of the first study on the adjoint method applied to the S2 surface through flow calculation including the cooling air effect are presented.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marco Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a 3-D Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field has been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development is inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass averaged losses shows a significant performance improvement in the contoured cascade. This has to be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


1986 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to provide the basis for calculating the erosion and performance deterioration of turbines using pulverized coal, an investigation is undertaken to determine the three dimensional particle trajectories in a two stage turbine. The solution takes into account the influence of the variation in the three dimensional flow field. The change in particle momentum due to their collision with the turbine blades and casings is modeled using empirical equations derived from experimental Laser Doppler Velocimetry (LDV) measurements. The results show the three dimensional trajectory characteristics of the solid particles relative to the turbine blades. The results also show that the particle distribution in the flow field are determined by particle-blade impacts. The results obtained from this study indicate the turbine blade locations which are subjected to more blade impacts and hence more erosion damage.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Author(s):  
Axel Widenhorn ◽  
Berthold Noll ◽  
Manfred Aigner

In this contribution the three-dimensional reacting turbulent flow field of a swirl-stabilized gas turbine model combustor is analyzed numerically. The investigated partially premixed and lifted CH4/air flame has a thermal power load of Pth = 35kW and a global equivalence ratio of φ = 0.65. To study the reacting flow field the Scale Adaptive Simulation (SAS) turbulence model in combination with the Eddy Dissipation/Finite Rate Chemistry combustion model was applied. The simulations were performed using the commercial CFD software package ANSYS CFX-11.0. The numerically achieved time-averaged values of the velocity components and their appropriate turbulent fluctuations (RMS) are in very good agreement with the experimental values (LDA). The same excellent results were found for other flow quantities like temperature and mixture fraction. Here, the corresponding time-averaged and the appropriate RMS profiles are compared to Raman measurements. Furthermore the instantaneous flow features are discussed. In accordance with the experiment the numerical simulation evidences the existence of a precessing vortex core (PVC). The PVC rotates with a frequency of 1596Hz. Moreover it is shown that in the upper part of the combustion chamber a tornado-like vortical structure is established.


Sign in / Sign up

Export Citation Format

Share Document