The Study on Robust Controller Synthesis Using Genetic Optimization Algorithm Integrating Taguchi Methods

2013 ◽  
Vol 284-287 ◽  
pp. 2341-2345
Author(s):  
Ho Nien Shou

A controller synthesis algorithm is developed in this paper. The algorithm employs the genetic algorithm for parameter optimization and Taguchi method for the planning of trails in applying the genetic algorithms. The resulting two-phase algorithm explores the orthogonal array in Taguchi method to conduct a series of experiments so that key parameters pertaining to the control factors, noise factors, and quality factors can be determined. In the first phase, a matrix-type experiment is conducted to determine the configuration for parameter optimization. The second phase then applies parameter optimization method to determine the controller parameter that leads to robust performance. The combined two-phase approach is effective and efficient in controller synthesis. The proposed algorithm is applied to a control-design benchmark problem. The resulting design is shown to have a superior performance to other existing controllers.

Author(s):  
Norani Atan ◽  
Burhanuddin Yeop Majlis ◽  
Ibrahin Ahmad ◽  
K. H. Chong

This research paper is about the investigation of Halo Implantation, Halo Implantation Energy, Halo Tilt, Compensation Implantation and Source/Drain Implantation. They are types of control factors that used in achievement of the threshold voltage value. To support the successfully of the threshold voltage (VTH) producing, Taguchi method by using L27 orthogonal array was used to optimize the control factors variation. This analysis has involved with 2 main factors which are break down into five control factors and two noise factors. The five control factors were varied with three levels of each and the two noise factors were varied with two levels of each in 27 experiments. In Taguchi method, the statistics data of 18 nm PMOS transistor are from the signal noise ratio (SNR) with nominal-the best (NTB) and the analysis of variance (ANOVA) are executed to minimize the variance of threshold voltage. This experiment implanted by using Virtual Wafer Fabrication SILVACO software which is to design and fabricate the transistor device. Experimental results revealed that the optimization method is achieved to perform the threshold voltage value with least variance and the percent, which is only 2.16%. The threshold voltage value from the experiment shows -0.308517 volts while the target value that is -0.302 volts from value of International Technology Roadmap of semiconductor, ITRS 2012. The threshold voltage value for 18 nm PMOS transistor is well within the range of -0.302 ± 12.7% volts that is recommendation by the International Roadmap for Semiconductor prediction 2012.


2013 ◽  
Vol 278-280 ◽  
pp. 143-148 ◽  
Author(s):  
Jian Jian Fan ◽  
Jian Hua Wu

This paper presents the use of Taguchi methods in optimizing a PMSM for reducing peak value of cogging torque. The analytical model of cogging torque is derived by the energe method. The Taguchi optimization method was used to generate the experiment samples, which were calculated in 2-D and 3-D FEA. Three different parameters of PMSM, such as skew ratio, pole embrace and stator slot width were optimized. ANOVA was used to analysis the effect of different factors in Taguchi method.


2013 ◽  
Vol 655-657 ◽  
pp. 491-495
Author(s):  
Jian Jian Fan ◽  
Jian Hua Wu

The torque pulsation was minimized using the Taguchi methods in this paper. The analytical model of torque was derived by the energy method. The Taguchi optimization method was used to generate the experiment samples, which were calculated in 2-D and 3-D FEA. Three different parameters of PMSM, such as skew ratio, pole embrace and stator slot width were optimized. ANOVA was used to analysis the effect of different factors in Taguchi method. The superiority of the optimized PMSM was also verified further through FEA.


2011 ◽  
Vol 189-193 ◽  
pp. 3056-3060 ◽  
Author(s):  
Keartisak Sriprateep ◽  
Puttipong Patumchat ◽  
Wasan Theansuwan

The objective of this study was to utilize Taguchi methods to optimize surface roughness, tool wear and power required to perform the machining operation in turning metal matrix composites (MMC). The cutting parameters are analyzed under varying cutting speed, feed rates and cutting time. The settings of turning parameters were determined by using Taguchi’s experimental design method. Orthogonal arrays of Taguchi, the signal-to-noise (S/N) ratio, the analysis of variance (ANOVA) are employed to find the optimal levels and to analyze the effect of the turning parameters. Confirmation tests with the optimal levels of machining parameters are carried out in order to illustrate the effectiveness of Taguchi optimization method. The results show that the Taguchi method is suitable to solve the stated problem with minimum number of trials.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiming Fu ◽  
Yinghua Han ◽  
Jinkuan Wang ◽  
Qiang Zhao

In most countries, the problems of energy and environment are becoming worse. To deal with the environmental impacts and the dependence on fossil energy, many solutions were proposed. Plug-in electric vehicles (PEVs) is one of the best technique among these solutions. However, the large number of PEVs connected to the power grid simultaneously might increase power fluctuation or even cause the electricity shortage and thus affecting the typical use of the basic load. To cope with this issue and inspire PEV users coordinating with scheduling results, an algorithm was proposed to ensure the power transmission safety of branches and maximize the economic benefits. Considering the cost of both PEV owners and the power grid, a two-phase model of optimizing PEVs charging and discharging behaviors was built. According to the traveling purpose of PEV owners and the current electricity price, in the first phase, a novel model which defines each PEV’s charging or discharging status was established. The number of PEVs’ charging and discharging in each charging station can be obtained. Considering the constraints on the power transportation of branch, in the second phase, we built a mathematical model to maximize the benefit of both power grid and PEV owners. The genetic algorithm was used to optimize the charging and discharging power of PEVs. Simulation results show that the optimization method proposed in this paper has a better performance on the daily power curve compared with the uncoordinated PEVs charging.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Fanting Meng ◽  
Yong Ding ◽  
Wenjie Li ◽  
Rongge Guo

With the fastest consumer demand growth, the increasing customer’s demands trend to multivarieties and small-batch and the customer requires an efficient distribution planning. How to plan the vehicle route to meet customer satisfaction of mass distribution as well as reduce the fuel consumption and emission has become a hot topic. This paper proposes a two-phase optimization method to handle the vehicle routing problem, considering the customer demands and time windows coupled with multivehicles. The first phase of the optimization method provides a fuzzy hierarchical clustering method for customer grouping. The second phase formulates the optimization en-group vehicle routing problem model and a genetic algorithm to account for vehicle routing optimization within each group so that fuel consumption and emissions are minimized. Finally, we provide some numerical examples. Results show that the two-phase optimization method and the designed algorithm are efficient.


2022 ◽  
Vol 36 (06) ◽  
Author(s):  
HUNGLINH AO ◽  
THANHHANG NGUYEN ◽  
V.HO HUU ◽  
TRANGTHAO NGUYEN

SVM parameters have serious effects on the accuracy rate of classification result. Tuning SVM parameters is always a challenge for scientists. In this paper, a SVM parameter optimization method based on Adaptive Elitist Differential Evolution (AeDE-SVM) is proposed. Furthermore, AeDE-SVM is applied to diagnose roller bearing fault by using complementary ensemble empirical mode decomposition (CEEMD) and singular value decomposition (SVD) techniques. First, original acceleration vibration signals are decomposed into Intrinsic Mode Function (IMFs) by using CEEMD method. Second, initial feature matrices are extracted from (IMFs) by singular value decomposition (SVD) techniques to obtain single values. Third, these values serve as input vector for AeDE-SVM classifier. The results show that the combination of AeDE-SVM classifiers and the CEEMD-SVD method obtains higher classification accuracy and lower cost time compared to other methods. In this paper, the roller bearing vibration signals were used to evaluate the proposed method. The experimental results showed that the superior performance compared to other SVM parameter optimization techniques and successfully recognized different fault types of roller bearing during its operation.


2021 ◽  
Vol 71 ◽  
pp. 54-63
Author(s):  
Jean-Antoine Désidéri ◽  
Régis Duvigneau

This work is part of the development of a two-phase multi-objective differentiable optimization method. The first phase is classical: it corresponds to the optimization of a set of primary cost functions, subject to nonlinear equality constraints, and it yields at least one known Pareto-optimal solution xA*. This study focuses on the second phase, which is introduced to permit to reduce another set of cost functions, considered as secondary, by the determination of a continuum of Nash equilibria, {x̅ε} (ε≥ 0), in a way such that: firstly, x̅0=xA* (compatibility), and secondly, for ε sufficiently small, the Pareto-optimality condition of the primary cost functions remains O(ε2), whereas the secondary cost functions are linearly decreasing functions of ε. The theoretical results are recalled and the method is applied numerically to a Super-Sonic Business Jet (SSBJ) sizing problem to optimize the flight performance.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


1985 ◽  
Vol 46 (C5) ◽  
pp. C5-251-C5-255
Author(s):  
S. Pytel ◽  
L. Wojnar

Sign in / Sign up

Export Citation Format

Share Document