Strategy for Carbon Dioxide Reduction – A Case Study of China

2013 ◽  
Vol 291-294 ◽  
pp. 1380-1384
Author(s):  
Rui Min Mu ◽  
Li Wei Zhan ◽  
Jing Jing Jia ◽  
Xue Liang Yuan

In order to increase the ability of tackling with climate change, China has put many efforts on restructuring industrial sectors, improving energy efficiency and developing new and renewable energy resources. This study provides a critical assessment of various factors on reducing CO2 emissions with the method of scenario analysis. The results show industrial restructuring has marginal effect on CO2 emissions compared with improving energy efficiency and adjusting energy structure. To achieve the projected target on CO2 emissions reduction, a combination of optimized industrial structure and energy structure as well as improved energy efficiency is the proper scenario for China. The findings provide a useful reference for policy-makers to develop energy policies.

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1244
Author(s):  
Yang Yu ◽  
Tianchang Wang

With the deepening of urbanization and industrialization, as well as the exacerbation of energy consumption, China is facing a severe situation in which nitrogen oxide (NOx) emissions reduction is imperative. In this study, it is aimed to put forward countermeasures and suggestions to reduce NOx emissions by analyzing the impact and mechanism of new urbanization, the agglomeration of energy-intensive industries and mutual interactions on China’s NOx emissions. By analyzing the data of 30 provinces in China from 2006 to 2017, this paper adopted the system generalized method of moments (SYS-GMM) and intermediary effect model to introduce four variables, such as: energy efficiency, human capital, industrial structure and energy structure, which were for empirical analysis. From the results, it was shown that: (1) NOx emissions in China have an accumulated effect; (2) new urbanization inhibits NOx emissions, whilst the agglomeration of energy-intensive industries intensifies NOx emissions. New urbanization weakens the negative impact of the agglomeration of energy-intensive industries on NOx emissions reduction and, (3) among the impacts of new urbanization on NOx emissions, the energy efficiency and human capital reflect the intermediary effect mechanism. At the same time, in the impact of the agglomeration of energy-intensive industries on NOx emissions, the industrial structure and energy structure show the mechanisms of the intermediary effect and masking effect, respectively.


2017 ◽  
Vol 9 (7) ◽  
pp. 228 ◽  
Author(s):  
Ting Liu ◽  
Wenqing Pan

This paper combines Theil index method with factor decomposition technique to analyze China eight regions’ inequality of CO2 emissions per capita, and discuss energy structure, energy intensity, industrial structure, and per capita output’s impacts on inequality. This research shows that: (1) The trend of China regional carbon inequality is in the opposite direction to the per capita CO2 emission level. Namely, as the per capita CO2 emission levels rise, regional carbon inequality decreases, and vice versa. (2) Per capita output factor reduces regional carbon inequality, whereas energy structure factor and energy intensity factor increase the inequality. (3) More developed areas can reduce the carbon inequality by improving the energy structure, whereas the divergence of energy intensity in less developed areas has increased to expand the carbon inequity. Thus, when designing CO2 emission reduction targets, policy makers should consider regional differences in economic development level and energy efficiency, and refer to the main influencing factors. At the same time, upgrading industrial structure and upgrading energy technologies should be combined to meet the targets of economic growth and CO2 emission reduction.


2021 ◽  
Author(s):  
Yulin Zhang

To fill the shortcomings of traditional research that ignores the driver’s own spatial characteristics and provide a theoretical support to formulate suitable emission reduction policies in different regions across China. In this pursuit, based on the panel data of provincial CO2 emission in 2007, 2012, and 2017, the present study employed the extended environmental impact assessment model (STIRPAT-GWR model) to study the effect of population, energy intensity, energy structure, urbanization and industrial structure on the CO2 emissions in 29 provinces across China. The empirical results show that the effect of drivers on the CO2 emissions exhibited significant variations among the different provinces. The effect of population in the southwest region was significantly lower than that of the central and eastern regions. Provinces with stronger energy intensity effects were concentrated in the central and western regions. The effect of energy structure in the eastern and northern regions was relatively strong, and gradually weakened towards the southeast region. The areas with high urbanization effect were concentrated in the central and the eastern regions. Furthermore, significant changes were observed in the high-effect regions of the industrial structure in 2017. The high-effect area showed a migration from the northwest and northeast regions in 2007 and 2012, respectively, to the southwest and southeast regions in 2017. Urbanization showed the strongest effect on the CO2 emissions, followed by population and energy intensity, and the weakest effect was exhibited by the energy and industrial structure. Thus, the effects of population and energy structure showed a downward trend, in contrary to the effect of urbanization on the CO2 emissions in China.


2019 ◽  
Vol 12 (8) ◽  
pp. 2201-2213
Author(s):  
Josefin Borg ◽  
Hannes von Knorring

AbstractThis article explores the complexities of establishing knowledge-sharing practices between organizations through a case study of the creation of a database for energy efficiency measures relevant to the shipping sector. As researchers and policy-makers tend to point towards knowledge sharing and collaboration as means towards a more energy-efficient society, there is a need to better understand the knowledge sharing practices in such initiatives. The study is based upon extensive fieldwork where the first author was recruited to a collaborative network on energy efficiency in the shipping sector, to aid in the development of the collaboration while carrying out participatory-observational research in an ethnographic tradition. The study highlights the need to maintain realistic expectations for new knowledge-sharing collaborations, and the necessity to allow such arrangements to develop over time.


Author(s):  
Apostolos Fysikopoulos ◽  
Theocharis Alexopoulos ◽  
George Pastras ◽  
Panos Stavropoulos ◽  
Georgios Chryssolouris

Nowadays, manufacturing enterprises face enormous environmental challenges, due to complex and diverse economic trends, including shorter product life cycles, rapid advances in science and technology, increased diversity in customer demands and globalization of production activities. Consequently, the cost is highly affected by environmentally related factors. Energy efficiency is one of the main factors, which together with waste management, affect manufacturing decisions. The complexity and diversity of the factors that determine energy efficiency require intelligent systems for their optimization at each “manufacturing level”. Manufacturing decisions should be taken as fast as possible and with the highest possible accuracy. Artificial intelligence/machine learning tools have made significant progress during the last decade and are suitable for such applications. The main objective of the current study is that an architecture for the development of a networked, online, decision support tool, be provided towards achieving sustainable value chain management. The main idea behind the proposed design is that stakeholders be assisted in taking decisions towards improving the energy and eco-efficiency of the entire value chain or parts of it. This is suggested within the context of a multi-objective optimization procedure, taking into account other important decision making attributes, such as flexibility, quality and time for the final reduction in the overall cost. This architecture incorporates real time information modules that interact with online monitoring systems, using any available information within the value chain and the existing IT tools. A partial realization of the proposed idea is implemented in the form of a user friendly software tool (the MetaCAM tool). This based, decision support tool aiming to optimize a current production line or to propose alternatives for the manufacturing of a product. The tool performs optimization based on a set of predefined criteria, namely energy, waste, cost and time. For each of these criteria, the end-user selects the desired weight factor in order to drive the optimization procedure accordingly. The tool presents the characteristics of the setup of the proposed optimized line and maintains all used data and calculations in order to be reused when necessary. For the tool’s validation, three real case studies from different industrial sectors have been used. The first case study comes from the domestic appliances sector (refrigerator door panel), the second one from the automotive sector (a two seat bench for light commercial vehicles) and finally, the third case study derives from the aeronautics sector and deals with the production of the loading ramp hinge of a military aircraft.


Author(s):  
Xin Li ◽  
Xiandan Cui ◽  
Minxi Wang

Reducing carbon emissions is a major ways to achieving green development and sustainability for China’s future. This paper elaborates the detailed feature of China's carbon flow for 2013 with the carbon flow chart and gives changing characteristics of China's CO2 flow from the viewpoint of sector and energy during 2000 and 2013. The results show that (1) during 2000 to 2013, China's CO2 emissions with the approximately growth portion of 9% annually, while the CO2 intensity of China diminishes at different rates. (2) The CO2 emissions from secondary industry are prominent from the perspective of four main sectors accounting for 83.5%. The manufacturing play an important part in the secondary industry with 45%. In which the "smelting and pressing of metal" takes up a large percentage as about 50% in manufacturing. (3) The CO2 emissions produced by coal consumption is keep dominant in energy-related emissions with a contribution of 65%, while it will decrease in the future. (4) From the aspect of sector, the CO2 emissions mainly come from the "electricity and heating" sector and the "smelting and pressing of metals" sub-sector. While it is essential and urgent to propose concrete recommendations for CO2 emissions mitigation. Firstly, the progression of creative technology is inevitable and undeniable. Secondly, the government should make different CO2 emissions reduction policies among different sectors. For example, the process emission plays an important role in "non-metallic mineral" while in "smelting and manufacturing of metals" it is energy. Thirdly, the country can change the energy structure and promote renewable energy for powering by wind or other low-carbon energy. Besides it, the coke oven gas can be a feasible substitution. Finally, policy maker should be aware of the emissions from residents have been growing in a fast rate. It is effective to involve the public in the activity of energy conservation and carbon emissions reduction such as reducing the times of personal transportation.


Sign in / Sign up

Export Citation Format

Share Document