scholarly journals Inter-organizational collaboration for energy efficiency in the maritime sector: the case of a database project

2019 ◽  
Vol 12 (8) ◽  
pp. 2201-2213
Author(s):  
Josefin Borg ◽  
Hannes von Knorring

AbstractThis article explores the complexities of establishing knowledge-sharing practices between organizations through a case study of the creation of a database for energy efficiency measures relevant to the shipping sector. As researchers and policy-makers tend to point towards knowledge sharing and collaboration as means towards a more energy-efficient society, there is a need to better understand the knowledge sharing practices in such initiatives. The study is based upon extensive fieldwork where the first author was recruited to a collaborative network on energy efficiency in the shipping sector, to aid in the development of the collaboration while carrying out participatory-observational research in an ethnographic tradition. The study highlights the need to maintain realistic expectations for new knowledge-sharing collaborations, and the necessity to allow such arrangements to develop over time.

2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


2020 ◽  
Vol 25 (2) ◽  
pp. 39-61
Author(s):  
Mohammed Seddiki ◽  
Amar Bennadji ◽  
Mohamed Tehami

The residential sector of Algeria consumes 29% of the total energy consumption. In order to reduce and address this consumption along with the challenges of climate change, the Algerian public policy considers energy efficiency investment measures (EEIMs) in the residential sector as a key factor. However, despite the recommendations and incitement measures from the government, the adoption of EEIMs of Algerian homeowners is too low. In 2018, EEIMs have been implemented in 4,000 houses. This number represents only 4% of the government's target which is the implementation of EEIMs in 100,000 houses per year. The present article, accordingly, attempts to explore the barriers to the adoption of EEIMs. To this effect, a questionnaire survey with 150 randomly selected Algerian single-family homeowners in Mostaganem area was used for the study. It was found that the five greatest barriers to the adoption of EEIMs were: (1) the lack of subsidies and rebates on energy efficient equipment, (2) the high initial prices of energy efficient equipment, (3) the lack of techniques and tools for the estimation of saved energy, (4) the unwillingness to borrow money and (5) the difficulty of identifying, procuring, installing, operating and maintaining energy efficiency measures. The principal component analysis categorised 16 barriers around four components: (1) "Financial" barriers, (2) "Technological" barriers, (3) "Lack of time and knowledge" barriers and (4) "Attitude towards energy efficiency improvements" barriers. Finally, the multivariate analysis of variance (MANOVA) analysis has shown that the perception of barriers to the adoption of EEIMs also differs in accordance with certain personal characteristics of the homeowner.


2016 ◽  
Vol 2016 ◽  
pp. 1-180
Author(s):  
Katerina Petrushevska

AIM: This research examines the important issue of energy efficient improvements to the existing building stock through building envelope upgrade. To facilitate this, the energy performance characteristics of the existing building stock were identified with a view to establishing an existing building stock type, where building envelope upgrades can contribute to a higher level of energy efficiency improvements. The literature review along with the selected building precedents was used to establish the best current practice for building envelope upgrades.MATERIAL AND METHODS: Established building precedents and identified best practice for building envelope upgrade, a high rise block of flats was identified and used as a case study, with the current and predicted, following building envelope upgrade, energy performance of the building calculated. This has allowed us to identify the possible energy efficiency improvements for this type of building following the building envelope upgrade. RESULTS: In the projected case, the building with energy class - "D" become class "B". In addition, increased quality of the living room in the attic was enabled. It was possible to obtain a decrease of the heating energy from 130.76 kWh/m²a to 37.73 kWh/m²a or to jump in the class "B" of energetic passport.CONCLUSION: This research contributes to the local implementation of the global agenda for sustainable development, design and construction, and it demonstrates the possible way and level of energy efficiency improvements to the least efficient building stock through existing building envelope upgrade.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 3919-3937
Author(s):  
Essam Elnagar ◽  
Simran Munde ◽  
Vincent Lemort

One pavilion was selected for deep retrofitting from the Otto Wagner area situated in the west of Vienna. The retrofitting process involves sustainable and energy-efficient construction to improve the energy performance and energy production potential of the building while preserving the cultural heritage and significance. This four-story pavilion was re-designed according to the proposed regulations of a net positive energy university building to become a student residence. Architectural, building envelope, and engineering interventions along with various changes were simulated through the Sefaira tool in the SketchUp model. These included: optimization of the U-values of the roof, walls, and floor; the addition of different layers of sustainable energy-efficient insulation materials to decrease the overall energy demand. The specific energy demands for heating, cooling, and lighting were decreased in the proposed model to reduce the total energy use intensity from 248.9 kWh/(m2 year) to 54.3 kWh/(m2 year) resulting in a 78.2% reduction. The main goal of this study is to try and achieve a net positive energy status building as part of the Otto Wagner area by improving the building envelope and integrating renewable energies. A total of 22.5% of the annual energy consumption was generated by the designed PV system. The selected building achieved the passive house standards in Austria by optimizing the energy performance with the proposed energy efficiency measures.


2021 ◽  
Vol 111 (01-02) ◽  
pp. 31-36
Author(s):  
Lars Petruschke ◽  
Max Burkhardt ◽  
Benedikt Grosch ◽  
Thomas Kohne ◽  
Matthias Weigold ◽  
...  

Im Projekt ETA-Transfer werden Produktionsanlagen sowie die entsprechenden versorgungstechnischen Anlagen hinsichtlich energetischer Optimierungspotenziale untersucht. Bei sieben Unternehmen werden die jeweiligen lufttechnischen Anlagen analysiert. Hierzu werden Mess- und Unternehmensdaten erhoben, um dann mittels Simulationen potenzielle Energieeffizienzmaßnahmen bewerten zu können. Insgesamt wird in der Fallstudie ein CO2-Einsparpotenzial von circa 870 t/a identifiziert.   The ETA transfer project investigates production plants as well as the corresponding technical supply systems regarding their potential for energy optimization. The heating, ventilation and air conditioning (HVAC) systems of seven companies are analyzed. For this purpose, measurement and company data is collected to simulate and evaluate potential energy efficiency measures. The case study identifies a CO2 savings potential totalling approximately 870 t/a.


Sign in / Sign up

Export Citation Format

Share Document