Numerical Simulation of Blade Channel Vortex in a Low Head Francis Turbine

2013 ◽  
Vol 291-294 ◽  
pp. 1958-1962 ◽  
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical simulation of blade channel vortex in a low head Francis turbine using OpenFoam code. A mixture assumption and a finite rate mass transfer model were introduced to analyze blade channel vortex. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that using cavitation model to analyze blade channel vortex is very effective.

2013 ◽  
Vol 482 ◽  
pp. 375-380
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the re-entrant jet analysis of cavitating turbulent flow on a hydrofoil. Analysis was performed by OpenFOAM code. A mixture assumption and a finite rate mass transfer model were introduced. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. The result of numerical simulation clearly explained the mechanism of re-entrant jet and quasi-periodic law of cavitating flow on a hydrofoil.


2013 ◽  
Vol 291-294 ◽  
pp. 1963-1968
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical analysis of cavitating turbulent flow in a high head Francis turbine with draft tube natural air admission at part load operation. Analysis was performed by OpenFOAM code. A mixture assumption and a finite rate mass transfer model were introduced. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. The pressure distribution and the flow of air in the draft tube are analyzed in detail. Simulation results show that the pressure fluctuations on the draft tube wall can reduce with natural air admission.


2015 ◽  
Vol 741 ◽  
pp. 481-485
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical simulation of the vortex in a submersible axial flow pump impeller using OpenFoam code. A mixture assumption and a finite rate mass transfer model were introduced to analyze vortex. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the cavitation may occur on the lower portion of impeller suction side. And the blade channel vortex will be formed in the impeller. It can induce the pressure pulsation in the impeller and can result in reduced efficiency of the submersible axial flow pump.


2013 ◽  
Vol 662 ◽  
pp. 637-642
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical investigation of cavitating turbulent flow in a high head Francis turbine runner fitted with splitter blades at part load operation. Analysis was performed by OpenFOAM code. A mixture assumption and a finite rate mass transfer model were introduced. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results show that the volume fraction of water vapor and the pressure uneven distribution on the main blade and splitter blade. It will lead to cavitation and fatigue damage.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012152
Author(s):  
D V Platonov ◽  
A V Minakov ◽  
A V Sentyabov

Abstract The paper presents a numerical study of the free discharge of water through the turbine with a braked runner. The simulation was carried out for a unit of a full-scale Francis turbine. The finite volume method was employed for unstructured meshes using the DES method. The simulation results show the flow structures, integral characteristics, and pressure pulsations in the flow path. The analysis of the applicability of this approach to real conditions is carried out.


Author(s):  
Merouane Habib ◽  
Senouci Mohammed

In this paper, we investigate the no-reacting swirling flow by using the numerical simulation based to the unsteady Reynolds-averaged Navier-Stokes approach. The numerical simulation was realized by using a computational fluid dynamics CFD code. The governing equations are solved by using the finite volume method with two classical models of turbulence K-epsilon and Shear Stress K-ω. The objective of this paper is therefore to evaluate the performance of the two models in predicting the recirculation zones in a swirled turbulent flow. The current models are validated by comparing the numerical results of the axial, radial and tangential velocities to the experimental data from literature.


Author(s):  
Xiaoxu Du ◽  
Zhengdong Zhang

The steady non cavitation hydrodynamic characteristics of CLB4-55-1 tandem propeller and the steady cavitation flows of NACA66 hydrofoil are numerically studied firstly based on the RANS equations of homogeneous multiphase using CFD theory, combined with the SST k-ω turbulent model and Z-G-B cavitation model. Numerical simulation results are in good agreement with the experimental results, which indicates that the numerical method is reliable and accurate. Then, the cavitation performance of the tandem propeller are numerical simulated and analyzed. The results show that the computational model can predict the cavitation performance of tandem propeller accurately. The cavitation performance of tandem propeller is nearly the same as single propeller, however, the cavitation phenomenon of back propeller is greater than the head propeller at certain advance coefficient and cavitation number. The cavitation phenomenon will disappear with the increase of the advance coefficient or the cavitation number.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012013
Author(s):  
Shichao Pan ◽  
Weimin Li

Abstract In this paper, based on the high-order discrete scheme, a two-way fluid-solid coupling numerical simulation is for the damping valve plate. According to the discrete method, the governing equations of fluid structure coupling of damping valve plate are studied, including the basic conservation laws; Meanwhile, it analyzes the discretization of the control equation, including the discretization method and the high-order discretization format when the finite volume method is adopted. And based on this discrete format, a numerical simulation was performed on the damping valve, the oil flow condition is analyzed, and the velocity of the throttling hole at different time points and the throttling pressure are analyzed.


Sign in / Sign up

Export Citation Format

Share Document