Stall Nonlinear Flutter of Wind Turbine Blade Modeled as Thin-Walled Composite Beam Integrated with Structural Damping

2013 ◽  
Vol 291-294 ◽  
pp. 496-500
Author(s):  
Yong Sheng Ren ◽  
Ting Rui Liu

The effects of structural damping on the aeroelastic stability have been investigated for composite thin-walled blade. Structural model of the composite thin-walled blade exhibits bending-bending-twist coupling, with accounting for the presence of pretwist angle. The aerodynamic model used in the present paper is the differential dynamic stall model developed at ONERA. The structural damping of the blade is predicted based on the analytical formulas of the modal damping of thin-walled composite structure. The effect of structural damping on aeroelastic stability is taken into account by using proportional damping matrix. By means of Galerkin method, the nonlinear aeroelastic equations are reduced to ordinary equations. The general aerodynamic forces are obtained from strip theory. The resulting equations are then linearized for small perturbation about the equilibrium point and the stability characteristics are investigated through eigenvalue analysis and time domain integration.

Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben-Jaber

The development of the manufacturing-based industries is principally due to the improvement of various machining operations. Experimental studies are important in researches, and their results are also considered useful by the manufacturing industries with their aim to increase quality and productivity. Turning is one of the principal machining processes, and it has been studied since the 20th century in order to prevent machining problems. Chatter or self-excited vibrations represent an important problem and generate the most negative effects on the machined workpiece. To study this cutting process problem, various models were developed to predict stable and unstable cutting conditions. Stability analysis using lobes diagrams became useful to classify stable and unstable conditions. The purpose of this study is to analyze a turning process stability using an analytical model, with three degrees of freedoms, supported and validated with experimental tests results during roughing operations conducted on AU4G1 thin-walled tubular workpieces. The effects of the tubular workpiece thickness, the feed rate and the tool rake angle on the machining process stability will be presented. In addition, the effect of an additional structural damping, mounted inside the tubular workpiece, on the machining process stability will be also studied. It is found that the machining stability process is affected by the tubular workpiece thickness, the feed rate and the tool rake angle. The additional structural damping increases the stability of the machining process and reduces considerably the workpiece vibrations amplitudes. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces. The influence of this behavior on the stability of the machining process is assumed to be preponderant.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. A. Sina ◽  
T. Farsadi ◽  
H. Haddadpour

In this study, the aeroelastic stability and response of an aircraft swept composite wing in subsonic compressible flow are investigated. The composite wing was modeled as an anisotropic thin-walled composite beam with the circumferentially asymmetric stiffness structural configuration to establish proper coupling between bending and torsion. Also, the structural model consists of a number of nonclassical effects, such as transverse shear, material anisotropy, warping inhibition, nonuniform torsional model, and rotary inertia. The finite state form of the unsteady aerodynamic loads have been modeled based on the indicial aerodynamic theory and strip theory in the subsonic compressible flow. Novel Mach dependent exponential approximations of the indicial aerodynamic functions have been developed. The extended Galerkin’s method was used to construct the mass, stiffness, and damping matrices of the nonconservative aeroelastic system. Eigen analysis of the system was performed to obtain the aeroelastic instability (divergence and flutter) boundaries. Also, solving the equations of motion in the time domain leads to the aeroelastic response of wing in different flight speeds. The obtained results are compared with the available results in the literature, which reveals an excellent agreement. The numerical results obtained in this article seek to clarify the effects of geometrical and material couplings and flight Mach number on the aeroelastic instability and response of composite wings in subsonic compressible flow.


Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben Jaber

Nowadays, industrialists, especially those in the automobile and aeronautical transport fields, seek to lighten the weight of different product components by developing new materials lighter than those usually used or by replacing some massive parts with thin-walled hollow parts. This lightening operation is carried out in order to reduce the energy consumption of the manufactured products while guaranteeing optimal mechanical properties of the components and increasing quality and productivity. To achieve these objectives, some research centers have focused their work on the development and characterization of new light materials and some other centers have focused their work on the analysis and understanding of the encountered problems during the machining operation of thin-walled parts. Indeed, various studies have shown that the machining process of thin-walled parts differs from that of rigid parts. This difference comes from the dynamic behavior of the thin-walled parts which is different from that of the massive parts. Therefore, the purpose of this paper is to first highlight some of these problems through the measurement and analysis of the cutting forces and vibrations of tubular parts with different thicknesses in AU4G1T351 aluminum alloy during the turning process. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces and the influence of this behavior on the variations of the chip thickness and cutting forces is assumed to be preponderant. The second objective is to provide manufacturers with a practical solution to the encountered vibration problems by improving the structural damping of thin-walled parts by additional damping. It is found that the additional structural damping increases the stability of the cutting process and reduces considerably the vibrations amplitudes.


Author(s):  
Francesco Braghin ◽  
Simone Cinquemani ◽  
Ferruccio Resta

Many systems have, by their nature, a small damping and therefore they are potentially subjected to dangerous vibration phenomena. The aim of active vibration control is to contain this phenomenon, increasing the damping of the system without changing its natural frequencies and vibration modes. A control of this type can improve the dynamic performance, reduce the vibratory phenomenon (and the resulting acoustic noise) and increase the fatigue strength of the system. The paper introduces a new approach to the synthesis of a modal controller to suppress vibrations in structures: it turns from the traditional formulation of the problem showing how the performance of the designed controller can be evaluated through the analysis of the resulting modal damping matrix of the controlled system. Such analysis allows to evaluate spillover effects, due to the presence of un-modeled modes, the stability of the control and the consequent effectiveness in reducing vibration. The ability to easily manage this information allows the synthesis of an efficient modal controller. Theoretical aspects are supported by experimental applications on a large flexible system.


2010 ◽  
Vol 129-131 ◽  
pp. 23-27
Author(s):  
Ting Rui Liu ◽  
Yong Sheng Ren

Based on a laminated composite structure, vibration and nonlinear stall aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated construction of the circumferentially asymmetric stiffness (CAS) that produces bending-bending-twist coupling. The vibration characteristics of composite beam are determined by the Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the nolinear aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, pretwisted angle, ply-angle rotational speed, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, which can determine the stability of the blade forced by the nolinear aerodynamics.


2004 ◽  
Vol 108 (1085) ◽  
pp. 369-377 ◽  
Author(s):  
F. F. Afagh ◽  
F. Nitzsche ◽  
N. Morozova

AbstractThe aeroelastic stability of a uniform, untwisted hingeless ‘smart’ helicopter rotor blade in hover has been analysed. The concept of a ‘smart’ blade is achieved by implementing a piezoelectric stack at an appropriate location along a host blade such that upon actuation it enters the load path becoming an integral part of the host structure. Thus, the stiffness characteristics of the rotor are altered causing modal damping augmentation of the blade. The perturbation equations of motion for the ‘smart’ blade that describe the unsteady blade motion about the equilibrium operating condition are obtained using Galerkin’s method. These differential equations with periodic time coefficients are analysed for stability utilising the Floquet method. Six different regimes of actuation are investigated, and a parametric study is carried out by considering six different design cases. It is shown that, compared to a ‘host’ blade the stability characteristics of the ‘smart’ blade are not affected adversely. In fact, a judicious design and actuation of the ‘smart’ spring has the potential of improving the stability boundaries of individual blades.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. Cinquemani ◽  
F. Resta

Many systems have, by their nature, a small damping and therefore they are potentially subjected to dangerous vibration phenomena. The aim of active vibration control is to contain this phenomenon, improve the dynamic performance of the system, and increase its fatigue strength. A way to reach this goal is to increase the system damping, preferably without changing its natural frequencies and vibration modes. In the past decades this has been achieved by developing the well-known independent modal space control (IMSC) technique. The paper describes a new approach to the synthesis of a modal controller to suppress vibrations in structures. It turns from the traditional formulation of the problem and it demonstrates how the performance of the controller can be evaluated through the analysis of the modal damping matrix of the controlled system. The ability to easily manage this information allows us to synthesize an efficient modal controller. Furthermore, it enables us to easily evaluate the stability of the control, the effects of spillover, and the consequent effectiveness in reducing vibration. Theoretical aspects are supported by experimental applications on a large flexible system.


Author(s):  
V.B. Zylev ◽  
◽  
P.O. Platnov ◽  
I.V. Alferov ◽  
◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1398
Author(s):  
Natalia Kolkovska ◽  
Milena Dimova ◽  
Nikolai Kutev

We consider the orbital stability of solitary waves to the double dispersion equation utt−uxx+h1uxxxx−h2uttxx+f(u)xx=0,h1>0,h2>0 with combined power-type nonlinearity f(u)=a|u|pu+b|u|2pu,p>0,a∈R,b∈R,b≠0. The stability of solitary waves with velocity c, c2<1 is proved by means of the Grillakis, Shatah, and Strauss abstract theory and the convexity of the function d(c), related to some conservation laws. We derive explicit analytical formulas for the function d(c) and its second derivative for quadratic-cubic nonlinearity f(u)=au2+bu3 and parameters b>0, c2∈0,min1,h1h2. As a consequence, the orbital stability of solitary waves is analyzed depending on the parameters of the problem. Well-known results are generalized in the case of a single cubic nonlinearity f(u)=bu3.


2010 ◽  
Author(s):  
A. Guran ◽  
L. Lebedev ◽  
Michail D. Todorov ◽  
Christo I. Christov

Sign in / Sign up

Export Citation Format

Share Document