The Earth’s Critical Zone Science and its Research Progress

2013 ◽  
Vol 295-298 ◽  
pp. 2138-2142
Author(s):  
Wei Hua Zhang ◽  
Yan Yang ◽  
Jun Ying Jin

A promising and involving interdisciplinary concept-the earth’s critical zone science is introduced in this paper. Within the earth’s Critical Zone, the coupled chemical, physical and biological processes which define Earth’s weathering engine are driven by climatic, anthropogenic, and tectonic forcing. Followed by the concept and specific questions related to the critical zone were given. Finally, current research in order to understand the Critical zone was reviewed.

2021 ◽  
Vol 28 ◽  
Author(s):  
Chunyan Ao ◽  
Lin Gao ◽  
Liang Yu

: DNA methylation is an important mode of regulation in epigenetic mechanisms, and it is one of the research foci in the field of epigenetics. DNA methylation modification affects a series of biological processes, such as eukaryotic cell growth, differentiation and transformation mechanisms, by regulating gene expression. In this review, we systematically summarized the DNA methylation databases, prediction tools for DNA methylation modification, machine learning algorithms for predicting DNA methylation modification, and the relationship between DNA methylation modification and diseases such as hypertension, Alzheimer's disease, diabetic nephropathy, and cancer. An in-depth understanding of DNA methylation mechanisms can promote accurate prediction of DNA methylation modifications and the treatment and diagnosis of related diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanan Jiang ◽  
Xiuyun Shen ◽  
Moyondafoluwa Blessing Fasae ◽  
Fengnan Zhi ◽  
Lu Chai ◽  
...  

Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.


Author(s):  
T. Dhansay

Abstract The delicate interplay of various Earth’s systems processes in the Critical Zone is vital in ensuring an equilibrium across the different spheres of life. The upper crust forms a thin veneer on the Earth’s surface that is defined by an interconnected network of brittle structures. These brittle structures enable various Earth System processes. Increased anthropogenic interactions within the very upper crust have seemingly resulted in a growing number of negative natural effects, including induced seismicity, mine water drainage and land degradation. Brittle structures across South Africa are investigated. These structures include various fractures and dykes of different ages and geodynamic evolutions. The orientation of these structures is compared to the underlying tectonic domains and their bounding suture zones. The orientations corroborate an apparent link between the formation of the brittle structures and the tectonic evolution of the southern African crust. Reactivation and the creation of new structures are also apparent. These are linked to the variability of the surrounding stress field and are shown to have promoted magmatism, e.g., Large Igneous Provinces, and the movement of hydrothermal fluids. These fluids were commonly responsible for the formation of important mineral deposits. The preferred structural orientations and their relationship to underlying tectonic zones are also linked to fractured groundwater aquifers. Subsurface groundwater displays a link to structural orientations. This comparison is extended to surficial water movement. Surface water movement also highlights an apparent link to brittle structures. The apparent correlation between these Earth’s systems processes and the interconnectivity developed by brittle structures are clear. This highlights the importance of high-resolution geological and structural mapping and linking this to further development of the Earth’s Critical Zone.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Jonathan Martin ◽  
Paloma De Grammont ◽  
Matthew Covington ◽  
Laura Toran

Studies of Earth’s critical zone have largely focused on areas underlain by silicate bedrock, leaving gaps in our understanding of widespread and vital carbonate-dominated landscapes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Runnan Gao ◽  
Mujie Ye ◽  
Baihui Liu ◽  
Meng Wei ◽  
Duan Ma ◽  
...  

Modification of m6A, as the most abundant mRNA modification, plays diverse roles in various biological processes in eukaryotes. Emerging evidence has revealed that m6A modification is closely associated with the activation and inhibition of tumor pathways, and it is significantly linked to the prognosis of cancer patients. Aberrant reduction or elevated expression of m6A regulators and of m6A itself have been identified in numerous tumors. In this review, we give a description of the dynamic properties of m6A modification regulators, such as methyltransferases, demethylases, and m6A binding proteins, and indicate the value of the balance between these proteins in regulating the expression of diverse genes and the underlying effects on cancer development. Furthermore, we summarize the “dual-edged weapon” role of RNA methylation in tumor progression and discuss that RNA methylation can not only result in tumorigenesis but also lead to suppression of tumor formation. In addition, we summarize the latest research progress on small-molecule targeting of m6A regulators to inhibit or activate m6A. These studies indicate that restoring the balance of m6A modification via targeting specific imbalanced regulators may be a novel anti-cancer strategy.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kamini Singha ◽  
Pamela Sullivan ◽  
Li Li ◽  
Nicole Gasparini

A new network that embraces scientists with wide-ranging experiences and expertise aims to solve the challenges of Earth’s critical zone.


Sign in / Sign up

Export Citation Format

Share Document