Calculation and Analysis of Water Footprint in Shunyi District of Beijing

2013 ◽  
Vol 295-298 ◽  
pp. 964-969 ◽  
Author(s):  
Su Ling Liu ◽  
Yu Xin Wang ◽  
Xiao Hui Mao

The water footprint and consumption pattern is an effective tool for quantitifying the volume of water resources consumption in certain region [ ].Shunyi’s water footprint in the period 2006-2010 is calculated in this article from the view of virtual water. The general water footprint in Shunyi District at the year 2010 reached 790 million m3 and water footprint per capita was 536.48 cubic meters. Shunyi 's water resource quantity per capita was 501.27 m3 in the same year and the Water Scarcity Index was 1.98. The result of calculation shows that the water resource volume of exploitation in Shunyi District of Beijing has been beyond the water resources carrying capacity.

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1755 ◽  
Author(s):  
Ehsan Qasemipour ◽  
Ali Abbasi

Water challenges—especially in developing countries—are set to be strained by population explosion, growing technology, climate change and a shift in consumption pattern toward more water-intensive products. In these situations, water transfer in virtual form can play an important role in alleviating the pressure exerted on the limited water resources—especially in arid and semi-arid regions. This study aims to quantify the 10-year average of virtual water trade and the water footprint within South Khorasan—the third largest province in Iran—for both crops and livestock products. The virtual water content of 37 crops and five livestock is first estimated and the water footprint of each county is consequently measured using a top-down approach. The sustainability of the current agricultural productions is then assessed using the water scarcity (WS) indicator. Results of the study show that in spite of the aridity of the study area, eight out of 11 counties are net virtual water exporters. Birjand—the most populous county—is a net virtual water importer. The 10-year average water footprint of the region is measured as 2.341 Gm3 per year, which accounts for 2.28% of national water footprint. The region’s average per capita water footprint however, with 3486 m3, is 115% higher than the national ones. Crop production and livestock production are responsible for 82.16% and 17.84% of the total water footprint. The current intensive agricultural practices in such an arid region have resulted in a water scarcity of 206%—which is far beyond the sustainability criteria. This study gives the water authorities and decision-makers of the region a picture of how and where local water resources are used through the food trade network. The generated information can be applied by the regional policymakers to establish effective and applicable approaches to alleviate water scarcity, guarantee sustainable use of water supplies, and provide food security


2014 ◽  
Vol 955-959 ◽  
pp. 3075-3078
Author(s):  
Miao Chen ◽  
Feng Ping Wu

Taking Sunan’s water resource carrying capacity as the research object, this article extracted three principal components from thirteen indicators influencing water resources carrying capacity through principal component analysis method. Then bestowing weights to the three components using entropy value method, the composite scores of Sunan’s water resource carrying capacity from 2002 to 2012 could be calculated.The result shows that, with the advancement of Sunan modernization, Sunan’s water resource carrying capacity will face a major test, thus requiring a reasonable and efficient use of water resources and giving full play to potential of water resources.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 503
Author(s):  
Hui Li ◽  
Fen Zhao ◽  
Chunhui Li ◽  
Yujun Yi ◽  
Jiuhe Bu ◽  
...  

Economic development and increasing population density along the lower reaches of the Yellow river have challenged the river’s ability to meet human and ecological demand. The evaluation of the sustainability of water resources in the lower reaches of the Yellow River is of great significance for the achievement of high-quality development in the region. Based on an improved ecological footprint method considering soil water, the spatial and temporal evolution of the water resources ecological footprint and water resources carrying capacity and evaluates the utilization of water resources in the lower Yellow River are comprehensively evaluated. The results show that agricultural water consumption in the urban agglomerations in the lower reaches of the Yellow River occupies a major position in water consumption, accounting for more than 70%. In 2013–2017, the per capita water resources ecological footprint of the cities along the lower reaches of the Yellow River decreases every year, while the water resources carrying capacity is slightly fluctuating, but remains in a relatively stable state. The deficit situation has eased, falling by 54.52% in the past five years. The water use efficiency of the lower reaches of the Yellow River has increased every year, and the water resources conflict improved significantly, after the implementation of the new environmental policy in 2015. In terms of space, the cities with the smallest per capita ecological deficits include Zibo, Zhengzhou, and Laiwu City, and Dezhou, and Kaifeng and Binzhou City have the largest. Strict water resources management measures and water pollution prevention and control regulations should be formulated to improve the water use efficiency in these areas in order to solve the problem of water shortage.


Author(s):  
Yi Wu ◽  
Zhongyu Ma ◽  
Xiang Li ◽  
Li Sun ◽  
Shaohua Sun ◽  
...  

Abstract Jinan is a city that typifies the water resource shortage in North China. This study selected nine indices to evaluate the regional water resources carrying capacity (WRCC), which is an important constraining factor in relation to socioeconomic development and the ecological environment. The AHP-CRITIC weighting method was applied to determine the index weighting, and WRCC dynamics during 2011–2016 were analysed and evaluated quantitatively using the fuzzy comprehensive evaluation method. The results revealed the following. (1) During 2011–2016, the comprehensive score of the WRCC was <0.4, indicating poor WRCC. (2) The degree membership of the average evaluation results to V1, V2, and V3 increased successively during 2011–2016. The degree membership of V2 in 2011–2013 was greater than that of V3; however, the situation was reversed during 2014–2016. (3) The indices of available amount of water resources per capita, utilization rate of water resources, water supply per capita, modulus of water supply, quota of domestic water demand, and population density were factors that affected the WRCC of Jinan unfavourably. Conversely, the indices of water demand per 10,000 Yuan industrial output value and water use rate of the ecological environment were factors that played positive roles in improving the WRCC.


2011 ◽  
Vol 347-353 ◽  
pp. 3946-3951 ◽  
Author(s):  
Zhen Cai Cui ◽  
Jin Ling Hu ◽  
De Yuan Zhao ◽  
Hong Li Zhao

Three kinds of calculations are used in this literature based on the calculating modes on water resources carrying capacity in my literature [2]. The different level year & different guarantee rate water resources carrying capacity of Rizhao City will be calculated by the water-using efficiency factor and environment contribution (baffled) factor of America in 2005. The different welfare level (living standard) water resources carrying capacity of Rizhao City when the water-using efficiency factor and environment contribution (baffled) factor changed and it when the pollutants receiving capacity decreases 20%. The conclusion compared to the calculation results got by the method in literature [3]. According to the water resource carrying capacity status quo of Rizhao City, the thesis puts forward with development strategy in three aspects to strengthen the water resource carrying capacity of Rizhao City: Engineering type, Structure type and Economy & technique type.


2018 ◽  
Vol 38 ◽  
pp. 01012
Author(s):  
Qiang Zhao ◽  
Qian Gao ◽  
Mingyue Zhu ◽  
Xiumei Li

Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.


2014 ◽  
Vol 955-959 ◽  
pp. 3036-3039
Author(s):  
Yun Li Shi

Water scarcity has become a bottleneck that restricts the sustainable economic and social development of China Shandong Province. This paper analyzes the carrying capacity, development and utilization, and problems of water resources in Shandong Province, proposes ways to improve water resources carrying capacity, and builds a sustainable and balanced water resources security system for the construction of Bohai Economic Rim, to promote coordinated development between water resources and economy, society and environment.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3386
Author(s):  
Lin Yu ◽  
Xuezhen Xiong ◽  
Sayed Alim Samim ◽  
Zhiquan Hu

Water shortage and water pollution have become the key factors restricting the sustainable development of animal husbandry in China. In this study, the water footprint model was used to analyze the water resource carrying capacity and water environment bearing pressure of animal husbandry in 31 provinces of China from 2001 to 2019. The findings indicate that: (1) The development of animal husbandry has exacerbated the regional water deficiency problem. Shandong, Henan, Hebei, and Liaoning have become the most serious water deficit areas of animal husbandry in China. The decreasing water resource carrying capacity indicates that water resources are difficult in supporting the growth of animal husbandry; (2) the change of animal feeding structures has led to the decrease of gray water footprint and the alleviation of the water environment bearing pressure; however, the water environment of animal husbandry in northern China and the northwest is still overburdened, which poses a major challenge to the control of agricultural non-point source pollution; (3) furthermore, according to the spatial and temporal characteristics of the water resource carrying capacity and water environment bearing pressure, the main livestock-producing areas in the north are facing a profound “water-livestock” contradiction and showing an increasing trend. The research results will help decision-makers to adjust the development mode of animal husbandry, optimize resource allocation, and promote the sustainable development of resource-saving and environment-friendly animal husbandry.


Author(s):  
Ling Yang ◽  
Lin Wang

Abstract With the quick development of social economy, the sharp contradiction between supply and demand of urban water resources is becoming much more obvious. Comprehensive assessment of urban water resources carrying capacity is of great significance to urban sustainable development planning. In this study, the urban water resources carrying capacity of Qingdao based on basin unit over 2010–2030 is predicted using analytic hierarchy process and system dynamics method. The results showed that the total water demand of all the 9 basins have an upward annual trend from 2017 to 2030, among which the domestic water consumption increase obviously. The urban water resource carrying capacity indexes in all basin over 2017–2030 show a downward annual trend under the current social development model. So it is urgent to improve the water resource carrying capacity of each river basin by means of industrial structure optimization and upgrading and active development of new water sources.


Sign in / Sign up

Export Citation Format

Share Document