Computer Simulation for New Theoretical Model Constructed with Tuberculosis

2013 ◽  
Vol 300-301 ◽  
pp. 1658-1663 ◽  
Author(s):  
Chun Yen Chung ◽  
Hung Yuan Chung

In order to simulate the transmissions of vector-borne diseases and discuss the related health policies effects on vector-borne diseases, we using compartmental model to develop an epidemic simulation models. The research will analyze the complex dynamic mathematic model of tuberculosis epidemic and determine its stability property by using the popular Matlab/Simulink software and relative software packages. Facing the current TB epidemic situation, the development of TB and its developing trend through constructing a dynamic bio-mathematic system model of TB is investigated.

2021 ◽  
Author(s):  
Rafael Mateus Carrion ◽  
Susana Alvarez Zuluaga ◽  
Mariajose Franco Orozco ◽  
Paula Alejandra Escudero Marín

Agent-Based Models (ABM) have become a very useful tool to simulate the propagation of infectious diseases. To enhance the scope of these simulation models, some authors have combined ABMs with ODE models which are called Hybrid ABMs, and allows the simulation of models that demand a very high computational cost. In the present project, the main approach is to develop hybrid ABMs to understand the transmission dynamics of vector-borne diseases such as Dengue, Zika, and Chikungunya considering some geospatial characteristics of the city of Bello, Colombia. Some assumptions were considered to develop the computational model to understand and verify if the transmission dynamics were happening according to their theoretical behavior. The results obtained were satisfactory, and for future work, the idea is to integrate more components and make the model more realistic.


2004 ◽  
Vol 17 (1) ◽  
pp. 136-173 ◽  
Author(s):  
Robert W. Sutherst

SUMMARY Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8601 ◽  
Author(s):  
Shi Zhao ◽  
Salihu S. Musa ◽  
Jay T. Hebert ◽  
Peihua Cao ◽  
Jinjun Ran ◽  
...  

The burden of vector-borne diseases (Dengue, Zika virus, yellow fever, etc.) gradually increased in the past decade across the globe. Mathematical modelling on infectious diseases helps to study the transmission dynamics of the pathogens. Theoretically, the diseases can be controlled and eventually eradicated by maintaining the effective reproduction number, (${\mathcal{R}}_{\mathrm{eff}}$), strictly less than 1. We established a vector-host compartmental model, and derived (${\mathcal{R}}_{\mathrm{eff}}$) for vector-borne diseases. The analytic form of the (${\mathcal{R}}_{\mathrm{eff}}$) was found to be the product of the basic reproduction number and the geometric average of the susceptibilities of the host and vector populations. The (${\mathcal{R}}_{\mathrm{eff}}$) formula was demonstrated to be consistent with the estimates of the 2015–2016 yellow fever outbreak in Luanda, and distinguished the second minor epidemic wave. For those using the compartmental model to study the vector-borne infectious disease epidemics, we further remark that it is important to be aware of whether one or two generations is considered for the transition “from host to vector to host” in reproduction number calculation.


2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


2020 ◽  
Vol 14 (1) ◽  
pp. 81-88
Author(s):  
Fedor I. Vasilevich ◽  
Anna M. Nikanorova

The purpose of the research is development of preventive measures against zooanthroponoze vector-borne diseases spread by parasitic arthropods in the Kaluga Region. Materials and methods. The subject of the research was Ixodidae, mosquitoes, and small mammals inhabiting the Kaluga Region. The census of parasitic arthropods was carried out on the territory of all districts of the Kaluga Region and the city of Kaluga. Open natural habitat and human settlements were investigated. Weather conditions from 2013 to 2018 were also taken into account. For the purposes of the study, we used standard methods for capturing and counting arthropods and mouse-like rodents. In order to obtain mathematical models of small mammal populations, a full factorial experiment was conducted using the collected statistical data. In-process testing of the drug based on s-fenvalerate and piperonyl butoxide were carried out under the conditions of the agricultural collective farm “Niva” of the Kozelsky District, the Kaluga Region, and LLC “Angus Center of Genetics” of the Babyninsky District, the Kaluga Region. Results and discussion. In the Kaluga Region, two species of ixodic ticks are found, namely, Ixodes ricinus and Dermacentor reticulatus, which have two activity peaks. Mosquito may have 3-4 generations in a year in the Kaluga region. The most common mosquito species in the Kaluga Region are Aedes communis, Ae. (Och.) togoi and Ae. (Och.) diantaeus, Culex pipiens Culex Linnaeus, 1758 (Diptera, Culicidae) (Culex pipiens): Cx. pipiens f. pipiens L. (non-autogenic form) and Cx. p. f. molestus Fors. (autogenic form), which interbreed, and reproductively isolated in the Region. The developed mathematical models make it possible to quantify the risks of outbreaks of zooanthroponoze vector-borne diseases without the cost of field research, and allow for rational, timely and effective preventive measures. Medications based on s-fenvalerate and piperonyl butoxide and based on cyfluthrin showed high insecto-acaricidal efficacy and safety.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Mafalda Dordio ◽  
Relja Beck ◽  
Telmo Nunes ◽  
Isabel Pereira da Fonseca ◽  
Jacinto Gomes

Abstract Background Canine vector-borne diseases (CVBDs) are caused by a wide range of pathogens transmitted by arthropods. They have been an issue of growing importance in recent years; however, there is limited information about the vector-borne pathogens circulating in Portugal. The aim of the present study was to detect canine vector-borne bacteria and protozoa of veterinary and zoonotic importance using molecular methods. Methods One hundred and forty-two dogs from Lisbon, southern Portugal, were tested: 48 dogs from a veterinary hospital clinically suspected of vector-borne diseases and 94 apparently healthy dogs from shelters. Anaplasma spp./Ehrlichia spp., Babesia/Theileria spp., Hepatozoon spp., and Mycoplasma spp. infections were detected by PCR from blood samples and examined under light microscopy. Other information including clinical status and diagnostic test results were collected for each animal. Results Infections were detected by PCR in 48 (33.80%) dogs. Single infections were found in 35 dogs (24.64%), and co-infections were found in 13 (9.15%) dogs. Twenty-nine (20.42%) dogs were positive for Hepatozoon spp., 15 (10.56%) for Mycoplasma spp., 11 (7.75%) for Anaplasma spp./Ehrlichia spp., and six (4.21%) for Babesia spp. DNA sequencing was used to identify Babesia vogeli (2.81%), Babesia canis (1.40%), Hepatozoon canis (20.42%), Mycoplasma haematoparvum (2.11%), Mycoplasma haemocanis (8.45%), Anaplasma platys (7.04%), and Ehrlichia canis (0.70%). Conclusions This is the first molecular identification of B. canis and M. haematoparvum in dogs from southern Portugal. This study highlights the importance of molecular methods to identify CVBD pathogens in endemic areas and helps to guide the clinical approach of veterinarians in practice.


Author(s):  
Jairo Alfonso Mendoza-Roldan ◽  
Miguel Angel Mendoza-Roldan ◽  
Domenico Otranto

Sign in / Sign up

Export Citation Format

Share Document