scholarly journals Modeling the propagation of the Dengue, Zika and Chikungunya virus in the city of Bello using Agent-Based Modeling and Simulation

2021 ◽  
Author(s):  
Rafael Mateus Carrion ◽  
Susana Alvarez Zuluaga ◽  
Mariajose Franco Orozco ◽  
Paula Alejandra Escudero Marín

Agent-Based Models (ABM) have become a very useful tool to simulate the propagation of infectious diseases. To enhance the scope of these simulation models, some authors have combined ABMs with ODE models which are called Hybrid ABMs, and allows the simulation of models that demand a very high computational cost. In the present project, the main approach is to develop hybrid ABMs to understand the transmission dynamics of vector-borne diseases such as Dengue, Zika, and Chikungunya considering some geospatial characteristics of the city of Bello, Colombia. Some assumptions were considered to develop the computational model to understand and verify if the transmission dynamics were happening according to their theoretical behavior. The results obtained were satisfactory, and for future work, the idea is to integrate more components and make the model more realistic.

2021 ◽  
Author(s):  
Ville Tiukuvaara ◽  
Tom J. Smy ◽  
Karim Achouri ◽  
Shulabh Gupta

<p>While metasurfaces (MSs) are constructed from deeply-subwavelength unit cells, they are generally electrically-large and full-wave simulations of the complete structure are computationally expensive. Thus, to reduce this high computational cost, non-uniform MSs can be modeled as zero-thickness boundaries, with sheets of electric and magnetic polarizations related to the fields by surface susceptibilities and the generalized sheet transition conditions (GSTCs). While these two-sided boundary conditions have been extensively studied for single sheets of resonant particles, it has not been shown if they can correctly model structures where the two sides are electrically isolated, such as a fully-reflective surface. In particular, we consider in this work whether the fields scattered from a fully reflective metasurface can be correctly predicted for arbitrary field illuminations, with the source placed on either side of the surface. In the process, we also show the mapping of a PEC sheet with a dielectric cover layer to bi-anisotropic susceptibilities. Finally, we demonstrate the use of the susceptibilities as compact models for use in various simulation techniques, with an illustrative example of a parabolic reflector, for which the scattered fields are correctly computed using a integral equation (IE) based solver.<br></p>


2013 ◽  
Vol 300-301 ◽  
pp. 1658-1663 ◽  
Author(s):  
Chun Yen Chung ◽  
Hung Yuan Chung

In order to simulate the transmissions of vector-borne diseases and discuss the related health policies effects on vector-borne diseases, we using compartmental model to develop an epidemic simulation models. The research will analyze the complex dynamic mathematic model of tuberculosis epidemic and determine its stability property by using the popular Matlab/Simulink software and relative software packages. Facing the current TB epidemic situation, the development of TB and its developing trend through constructing a dynamic bio-mathematic system model of TB is investigated.


2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Kaouther Hamaidia ◽  
Noreddine Soltani

Abstract. Hamaidia K, Soltani N. 2021. Short communication: New report of Aedes albopictus in Souk Ahras, Northeast Algeria. Biodiversitas 22: 2901-2906. The present paper reports the occurrence of Aedes albopictus (Skuse), an aggressive Asian tiger mosquito in the city of Souk-Ahras (Northeast of Algeria). A “26 April” estate’ inhabitants (Souk-Ahras province) have reported unusual daytime bites by a striped mosquito. On early September 2020, an intensive field inspection was carried out for potential mosquito breeding sites in the locations around the city. A total of 105 specimens (8 larvae, 24 pupae and 73 adults) of Ae. albopictus were collected in a pile of old tyres in a residential garden. After previous records of this species in Algeria, this is the first evidence of its presence in Souk-Ahras province, and the findings enhance combined public participation with professional validation in surveillance of vector borne-diseases programs with emphasis on the need for sensitising citizens about controlling this important vector.


2021 ◽  
Author(s):  
Ville Tiukuvaara ◽  
Tom J. Smy ◽  
Karim Achouri ◽  
Shulabh Gupta

<p>While metasurfaces (MSs) are constructed from deeply-subwavelength unit cells, they are generally electrically-large and full-wave simulations of the complete structure are computationally expensive. Thus, to reduce this high computational cost, non-uniform MSs can be modeled as zero-thickness boundaries, with sheets of electric and magnetic polarizations related to the fields by surface susceptibilities and the generalized sheet transition conditions (GSTCs). While these two-sided boundary conditions have been extensively studied for single sheets of resonant particles, it has not been shown if they can correctly model structures where the two sides are electrically isolated, such as a fully-reflective surface. In particular, we consider in this work whether the fields scattered from a fully reflective metasurface can be correctly predicted for arbitrary field illuminations, with the source placed on either side of the surface. In the process, we also show the mapping of a PEC sheet with a dielectric cover layer to bi-anisotropic susceptibilities. Finally, we demonstrate the use of the susceptibilities as compact models for use in various simulation techniques, with an illustrative example of a parabolic reflector, for which the scattered fields are correctly computed using a integral equation (IE) based solver.<br></p>


Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 166-196
Author(s):  
Anna Paula Galvão Scheidegger ◽  
Henrique dos Santos Maxir ◽  
Amarnath Banerjee

The spread of infectious diseases is a complex system in which pathogens, humans, the environment, and sometimes vectors interact. Mathematical and simulation modelling is a suitable approach to investigate the dynamics of such complex systems. The 2019 novel coronavirus (COVID-19) pandemic reinforced the importance of agent-based simulation models to quickly and accurately provide information about the disease spread that would be otherwise hard or risky to obtain, and how this information can be used to support infectious disease control decisions. Due to the trade-offs between complexity, time, and accuracy, many assumptions are frequently made in epidemiological models. With respect to vector-borne diseases, these assumptions lead to epidemiological models that are usually bounded to single-strain and single-vector scenarios, where human behavior is modeled in a simplistic manner or ignored, and where data quality is usually not evaluated. In order to leverage these models from theoretical tools to decision-making support tools, it is important to understand how information quality, human behavior, multi-vector, and multi-strain affect the results. For this, an agent-based simulation model with different parameter values and different scenarios was considered. Its results were compared with the results of a traditional compartmental model with respect to three outputs: total number of infected individuals, duration of the epidemic, and number of epidemic waves. Paired t-test showed that, in most cases, data quality, human behavior, multi-vector, and multi-strain were characteristics that lead to statistically different results, while the computational costs to consider them were not high. Therefore, these characteristics should be investigated in more detail and be accounted for in epidemiological models in order to obtain more reliable results that can assist the decision-making process during epidemics.


2016 ◽  
Author(s):  
Qianqian Zhu ◽  
Annibale Panichella ◽  
Andy Zaidman

Mutation testing has been very actively investigated by researchers since the 1970s and remarkable advances have been achieved in its concepts, theory, technology and empirical evidence. While the latest realisations have been summarised by existing literature review, we lack insight into how mutation testing is actually applied. Our goal is to identify and classify the main applications of mutation testing and analyse the level of replicability of empirical studies related to mutation testing. To this aim, this paper provides a systematic literature review on the application perspective of mutation testing based on a collection of 159 papers published between 1981 and 2015. In particular, we analysed in which testing activities mutation testing is used, which mutation tools and which mutation operators are employed. Additionally, we also investigated how the core inherent problems of mutation testing, i.e. the equivalent mutant problem and the high computational cost, are addressed during the actual usage. The results show that most studies use mutation testing as an assessment tool targeting unit tests, and many of the supporting techniques for making mutation testing applicable in practice are still underdeveloped. Based on our observations, we made nine recommendations for the future work, including an important suggestion on how to report mutation testing in testing experiments in an appropriate manner.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Marcus Eder ◽  
Fanny Cortes ◽  
Noêmia Teixeira de Siqueira Filha ◽  
Giovanny Vinícius Araújo de França ◽  
Stéphanie Degroote ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document