scholarly journals Modelling the effective reproduction number of vector-borne diseases: the yellow fever outbreak in Luanda, Angola 2015–2016 as an example

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8601 ◽  
Author(s):  
Shi Zhao ◽  
Salihu S. Musa ◽  
Jay T. Hebert ◽  
Peihua Cao ◽  
Jinjun Ran ◽  
...  

The burden of vector-borne diseases (Dengue, Zika virus, yellow fever, etc.) gradually increased in the past decade across the globe. Mathematical modelling on infectious diseases helps to study the transmission dynamics of the pathogens. Theoretically, the diseases can be controlled and eventually eradicated by maintaining the effective reproduction number, (${\mathcal{R}}_{\mathrm{eff}}$), strictly less than 1. We established a vector-host compartmental model, and derived (${\mathcal{R}}_{\mathrm{eff}}$) for vector-borne diseases. The analytic form of the (${\mathcal{R}}_{\mathrm{eff}}$) was found to be the product of the basic reproduction number and the geometric average of the susceptibilities of the host and vector populations. The (${\mathcal{R}}_{\mathrm{eff}}$) formula was demonstrated to be consistent with the estimates of the 2015–2016 yellow fever outbreak in Luanda, and distinguished the second minor epidemic wave. For those using the compartmental model to study the vector-borne infectious disease epidemics, we further remark that it is important to be aware of whether one or two generations is considered for the transition “from host to vector to host” in reproduction number calculation.

2011 ◽  
Vol 16 (35) ◽  
Author(s):  
S A Florescu ◽  
C P Popescu ◽  
P Calistru ◽  
E Ceausu ◽  
M Nica ◽  
...  

In August 2011, a Plasmodium vivax malaria infection was diagnosed in a Romanian traveller returning from Greece. This case together with several reports over the past decade of autochthonous cases in Greece highlight that malaria should be considered as differential diagnosis in symptomatic travellers returning from this country. Travellers may serve as sentinels of emerging vector-borne diseases.


Epidemics ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 153-161 ◽  
Author(s):  
N.A. Hartemink ◽  
B.V. Purse ◽  
R. Meiswinkel ◽  
H.E. Brown ◽  
A. de Koeijer ◽  
...  

2022 ◽  
Vol 19 (2) ◽  
pp. 025601
Author(s):  
Alessandra R Lima ◽  
Lucas D Dias ◽  
Matheus Garbuio ◽  
Natalia M Inada ◽  
Vanderlei S Bagnato

Abstract The control of pests and vector-borne diseases (VDBs) are considered public health issues Worldwide. Among the control techniques and pesticides used so far, photodynamic inactivation (PDI) has been shown as an eco-friendly, low cost, and efficient approach to eliminate pests and VDBs. PDI is characterized using a photosensitizing molecule, light and molecular oxygen (O2) resulting in production of reactive oxidative species which can promote the oxidation of biomolecules on pests and vectors. Herein, we review the past 51 years (1970–2021) regarding the use of photo pesticides, reporting the most important parameters for the protocol applied, the results obtained, and limitations. Moreover, we described the mechanism of action of the PDI, main classes of photopesticides used so far as well as the cell death mechanism resulting from the photodynamic action.


2021 ◽  
Author(s):  
E. Bonyah ◽  
M. L. Juga ◽  
C. W. Chukwu ◽  
Fatmawati

AbstractClimate changes are affecting the control of many vector-borne diseases, particularly in Africa. In this work, a dengue fever model with protected travellers is formulated. Caputo-Fabrizio operator is utilized to obtain some qualitative information about the disease. The basic properties and the reproduction number is studied. The two steady states are determined and the local stability of the states are found to be asymptotically stable. The fixed pointed theory is made use to obtain the existence and uniqueness of solutions of the model. The numerical simulation suggests that the fractional-order affects the dynamics of dengue fever.


2009 ◽  
Vol 4 (5) ◽  
pp. 322-328 ◽  
Author(s):  
Tomohiko Takasaki ◽  
◽  
Akira Kotaki ◽  
Chang-Kweng Lim ◽  
Shigeru Tajima ◽  
...  

Arthropod-borne infections carried by mosquitoes and ticks are difficult to eradicate, once rooted, and have frequently caused wide-area epidemics such as dengue fever, West Nile fever, chikungunya fever, yellow fever, Japanese encephalitis and Rift Valley fever. Factors such as global warming and overpopulation have aggravated urban epidemics caused by dengue and chikungunya viruses. Measures against arthropods have their limitations, however, so nonepidemic areas must be protected against invasion by vector-borne diseases through quarantine, education and effective vaccination.


2019 ◽  
Vol 286 (1905) ◽  
pp. 20190973 ◽  
Author(s):  
Scott A. Ritchie ◽  
Kyran M. Staunton

In this perspective, I discuss the great eras of vector control, centring on Aedes aegypti , the primary vector of dengue, Zika and several other viruses. Since the discovery and acceptance of the role of mosquitoes as vectors of disease agents, several significant strategies have been developed and deployed to control them and the diseases they transmit. Environmental management, insecticides and, to a lesser extent, biological control have emerged as great eras of vector control. In the past decade, the release of massive numbers of specifically modified mosquitoes that mate with wild populations has emerged as a significant new strategy to fight vector-borne diseases. These reared and released mosquitoes have been modified by the addition of a symbiont (e.g. Wolbachia bacteria), radiation or introduction of a genetic construct to either sterilize the wild mosquitoes they mate with, crashing the population, or to reduce the wild population's capacity to vector pathogens. Will these new rear and release strategies become the next great era of vector control? From my vantage point as a dengue control manager and researcher involved in two Wolbachia programmes, I will discuss the hurdles that rear and release programmes face to gain widespread acceptance and success.


2013 ◽  
Vol 300-301 ◽  
pp. 1658-1663 ◽  
Author(s):  
Chun Yen Chung ◽  
Hung Yuan Chung

In order to simulate the transmissions of vector-borne diseases and discuss the related health policies effects on vector-borne diseases, we using compartmental model to develop an epidemic simulation models. The research will analyze the complex dynamic mathematic model of tuberculosis epidemic and determine its stability property by using the popular Matlab/Simulink software and relative software packages. Facing the current TB epidemic situation, the development of TB and its developing trend through constructing a dynamic bio-mathematic system model of TB is investigated.


Author(s):  
Didier G. Leibovici ◽  
Helena Bylund ◽  
Christer Björkman ◽  
Nikolay Tokarevich ◽  
Tomas Thierfelder ◽  
...  

Some of the climate-sensitive infections (CSIs) affecting humans are zoonotic vector-borne diseases, such as Lyme borreliosis (BOR) and tick-borne encephalitis (TBE), mostly linked to various species of ticks as vectors. Due to climate change, the geographical distribution of tick species, their hosts, and the prevalence of pathogens are likely to change. A recent increase in human incidences of these CSIs in the Nordic regions might indicate an expansion of the range of ticks and hosts, with vegetation changes acting as potential predictors linked to habitat suitability. In this paper, we study districts in Fennoscandia and Russia where incidences of BOR and TBE have steadily increased over the 1995–2015 period (defined as ’Well Increasing districts’). This selection is taken as a proxy for increasing the prevalence of tick-borne pathogens due to increased habitat suitability for ticks and hosts, thus simplifying the multiple factors that explain incidence variations. This approach allows vegetation types and strengths of correlation specific to the WI districts to be differentiated and compared with associations found over all districts. Land cover types and their changes found to be associated with increasing human disease incidence are described, indicating zones with potential future higher risk of these diseases. Combining vegetation cover and climate variables in regression models shows the interplay of biotic and abiotic factors linked to CSI incidences and identifies some differences between BOR and TBE. Regression model projections up until 2070 under different climate scenarios depict possible CSI progressions within the studied area and are consistent with the observed changes over the past 20 years.


Sign in / Sign up

Export Citation Format

Share Document