Research on the Simulation of Self-Synchronization of Dual Mass for Vibrating System with Two-Motor Drives

2013 ◽  
Vol 300-301 ◽  
pp. 18-21 ◽  
Author(s):  
Duo Yang ◽  
Ye Li ◽  
He Li ◽  
Bang Chun Wen

The coupling dynamic characteristics of the vibrating system with dual mass are analyzed quantitatively. Through numerical computation, the effects of translation and rotation in the system regarding self-synchronization are discussed. The phase difference of two eccentric blocks is caused by the difference of the rated revolution of two motors. The stability of the synchronous operation is dependent on the structural parameters of the system. Simulation is carried out to verify that the system can be synchronized and the model can guarantee the stability of synchronization if the parameters of the system meet the conditions of synchronous implementation and stability. Simulations are also performed for the self-synchronization of two motors with different rated revolutions.

2009 ◽  
Vol 16 (5) ◽  
pp. 517-528 ◽  
Author(s):  
Chunyu Zhao ◽  
Hongtao Zhu ◽  
Tianju Bai ◽  
Bangchun Wen

The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.


2013 ◽  
Vol 300-301 ◽  
pp. 928-931
Author(s):  
Duo Yang ◽  
Ye Li ◽  
He Li ◽  
Bang Chun Wen

A vibration model is proposed and analyzed dynamically to study the self-synchronization theory of dual-mass vibration system. The differential equations of systematic motion are derived by applying Lagrange’s equations. Two uncertain parameters are introduced to derive the coupling equations of angular velocity of the two exciters. The conditions of synchronous implementation and stability are derived by utilizing the modified small parameter average method treated as non-dimension to the parameters. The swing of the vibration model plays a major role in the self-synchronization of two motors. The mass ratio of two eccentric blocks has an effect on the stability of synchronous operation.


2013 ◽  
Vol 20 (2) ◽  
pp. 327-340 ◽  
Author(s):  
Xue-Liang Zhang ◽  
Chun-Yu Zhao ◽  
Bang-Chun Wen

In this paper we give some theoretical analyses and experimental results on synchronization of the two non-identical exciters. Using the average method of modified small parameters, the dimensionless coupling equation of the two exciters is deduced. The synchronization criterion for the two exciters is derived as the torque of frequency capture being equal to or greater than the absolute value of difference between the residual electromagnetic torques of the two motors. The stability criterion of synchronous state is verified to satisfy the Routh-Hurwitz criterion. The regions of implementing synchronization and that of stability of phase difference for the two exciters are manifested by numeric method. Synchronization of the two exciters stems from the coupling dynamic characteristic of the vibrating system having selecting motion, especially, under the condition that the parameters of system are complete symmetry, the torque of frequency capture stemming from the circular motion of the rigid frame drives the phase difference to approach PI and carry out the swing of the rigid frame; that from the swing of the rigid frame forces the phase difference to near zero and achieve the circular motion of the rigid frame. In the steady state, the motion of rigid frame will be one of three types: pure swing, pure circular motion, swing and circular motion coexistence. The numeric and experiment results derived thereof show that the two exciters can operate synchronously as long as the structural parameters of system satisfy the criterion of stability in the regions of frequency capture. In engineering, the distance between the centroid of the rigid frame and the rotational centre of exciter should be as far as possible. Only in this way, can the elliptical motion of system required in engineering be realized.


2019 ◽  
Vol 39 (1) ◽  
pp. 114-128
Author(s):  
Nan Zhang

The self-synchronization characteristics of the two excited motors for the nonlinear vibration system with the asymmetrical hysteresis have been proposed in the exceptional circumstances of cutting off the power supply of one of the two excited motors. From the point of view of the hysteretic characteristics with the asymmetry, a class of nonlinear dynamic model of the self-synchronous vibrating system is presented for the analysis of the hysteretic characteristics of the soil, which is induced by the relation between the stress and the strain in the soil. The periodic solutions for the self-synchronous system with the asymmetrical hysteresis are investigated using nonlinear asymptotic method. The synchronization condition for the self-synchronous vibrating pile system with the asymmetrical hysteresis is theoretical analyzed using the rotor–rotation equations of the two excited motors. The synchronization stability condition also is theoretical analyzed using Jacobi matrix of the phase difference equation of the two excited motors. Using Matlab/Simlink, the synchronous operation of the two excited motors and the synchronous stability operation of the self-synchronous system with the asymmetrical hysteresis are analyzed through the selected parameters. Various synchronous phenomena are obtained through the difference rates of the two excited motors, including the different initial phase and the different initial angular velocity, and so on. Especially, when there is a certain difference in the two excited motors, the synchronous operation of the two excited motors and the synchronous stability operation of the self-synchronous vibrating system with the asymmetrical hysteresis can still be achieved after the power supply of one of the two excited motors has been disconnected. It has been shown that the research results can provide a theoretical basis for the research of the vibration synchronization theory.


2009 ◽  
Vol 16 (5) ◽  
pp. 505-515 ◽  
Author(s):  
Chunyu Zhao ◽  
Hongtao Zhu ◽  
Ruizi Wang ◽  
Bangchun Wen

In this paper an analytical approach is proposed to study the feature of frequency capture of two non-identical coupled exciters in a non-resonant vibrating system. The electromagnetic torque of an induction motor in the quasi-steady-state operation is derived. With the introduction of two perturbation small parameters to average angular velocity of two exciters and their phase difference, we deduce the Equation of Frequency Capture by averaging two motion equations of two exciters over their average period. It converts the synchronization problem of two exciters into that of existence and stability of zero solution for the Equation of Frequency Capture. The conditions of implementing frequency capture and that of stabilizing synchronous operation of two motors have been derived. The concept of torque of frequency capture is proposed to physically explain the peculiarity of self-synchronization of the two exciters. An interesting conclusion is reached that the moments of inertia of the two exciters in the Equation of Frequency Capture reduce and there is a coupling moment of inertia between the two exciters. The reduction of moments of inertia and the coupling moment of inertia have an effect on the stability of synchronous operation.


2014 ◽  
Vol 602-605 ◽  
pp. 1434-1437
Author(s):  
Duo Yang

In the first part of my paper, a vibration model has been put forward for studying the self-synchronization of a vibrating system by two-motor driven with isolation frame. The self-synchronization motion implementation and the stability condition of self-synchronization motion is obtained by the Routh-Hurwitz criterion. Zhao C Y [ 1 ,2 ] developed self-synchronization of the duel-motor and four-motor driven vibrating system by modified average method. S everal methods were used to analyze the self-synchronous motion verifying the self-synchronization of two motors. Wang D G used the computer to simulate the process of self-synchronization, and the results showed that the synchronization of vibrating system came true in either speed or phase to enable the system to be in a good self-synchronization state [ 3 ] . Balthazar [ 4 ,5 ] studied the self-synchronization of four motors having limited power supply and mounted on a flexible structural frame support.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 665
Author(s):  
Zhiqi Zheng ◽  
Zuoli Fu ◽  
Chenyang Wang ◽  
Yuxiang Huang ◽  
Jinpu He

When the potato planter works on sloping field, it will cause problems such as poor film mulching quality due to the difference in volume of soil covering both sides of the discs and the inconvenient adjustment of the soil covering disc. The soil covering device with linkage and differential adjustment was designed to improve the mulching quality. The main research content includes explaining the structure and principle of the soil covering device and analyzing the structural parameters of the adjustment mechanism. The field experiment was completed to verify the performance of soil covering device, which takes the stability coefficient and uniformity coefficient of the volume of covering soil as factors. The result shows the following: (1) The volume of covering soil changes exponentially with the angle of the disc through data fitting, which can standardize the angle of covering disc; and (2) when the angle of disc is 30° and 60°, respectively, the uniformity coefficient of volume of covering soil is lower than 1.4, which has premium soil covering quality. When the angles of the discs on both sides differ greatly, the stability coefficient of volume of covering soil is 0.41, which can meet the requirements of the mulching quality of potato planter. This research provides the technical support for high-quality potato planting.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 63-72 ◽  
Author(s):  
Zhaohui Ren ◽  
Qinghua Zhao ◽  
Chunyu Zhao ◽  
Bangchun Wen

We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE). By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2027 ◽  
Author(s):  
Jae Lee

This paper presents a stability analysis and dynamic characteristics investigation of deadbeat-direct torque and flux control (DB-DTFC) of interior permanent magnet synchronous motor (IPMSM) drives with respect to machine parameter variations. Since a DB-DTFC algorithm is developed based on a machine model and parameters, stability with respect to machine parameter variations should be evaluated. Among stability evaluation methods, an eigenvalue (EV) migration is used in this paper because both the stability and dynamic characteristics of a system can be investigated through EV migration. Since an IPMSM drive system is nonlinear, EV migration cannot be directly applied. Therefore, operating point models of DB-DTFC and CVC (current vector control) IPMSM drives are derived to obtain linearized models and to implement EV migration in this paper. Along with DB-DTFC, current vector control (CVC), one of the widely used control algorithms for motor drives, is applied and evaluated at the same operating conditions for performance comparison. For practical analysis, the US06 supplemental federal test procedure (SFTP), one of the dynamic automotive driving cycles, is transformed into torque and speed trajectories and the trajectories are used to investigate the EV migration of DB-DTFC and CVC IPMSM drives. In this paper, the stability and dynamic characteristics of DB-DTFC and CVC IPMSM drives are compared and evaluated through EV migrations with respect to machine parameter variations in simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document