"The Seven Claps" of Quan-Zhou Chest-Clapping with Motion Capture

2013 ◽  
Vol 311 ◽  
pp. 202-207 ◽  
Author(s):  
Si Xi Chen ◽  
Shu Chen ◽  
Jian De Lin ◽  
Jian Wei Li ◽  
Xin Chen

This paper focuses on the motion capture method of the certain variety of South China traditional folk dance, Quan-zhou Chest-clapping. The authors used Vicon Motion Capture system to capture the motion of “the seven claps”, the basic form of Quan-zhou Chest-clapping Dance, and optimized the capture procedures and acting standards for the clapping and certain motions’ capture. To process the motion data , the authors used the Motionanalysis system to obtain the six degrees of freedom of certain basic dance motions, by measuring the motions’ maximum and minimum values of linear displacements and angular displacements on axis X ,Y and Z. Based on the measuring results of the motions’ degrees of freedom, the authors further discussed the quantification of motion course and developed the integrate exclusive motion capturing assessment criteria.

2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Author(s):  
Woong Choi ◽  
◽  
Naoki Hashimoto ◽  
Ross Walker ◽  
Kozaburo Hachimura ◽  
...  

Creating reactive motions with conventional motion capture systems is difficult because of the different task environment required. To overcome this drawback, we developed a reactive motion capture system that combines conventional motion capture system with force feedback and a human-scale virtual environment. Our objective is to make animation with reactive motion data generated from the interaction with force feedback and the virtual environment, using the fact that a person’s motions in the real world can be represented by the reactions of the person to real objects. In this paper we present the results of some animations made under various scenarios using animating reactive motion generation with our reactive motion capture system. Our results demonstrate that the reactive motion generated by this system was useful for producing the animation including scenes of reactive motion.


2004 ◽  
Vol 01 (04) ◽  
pp. 651-669 ◽  
Author(s):  
KATSU YAMANE ◽  
JESSICA K. HODGINS ◽  
H. BENJAMIN BROWN

In this paper, we present a method for controlling a motorized, string-driven marionette using motion capture data from human actors and from a traditional marionette operated by a professional puppeteer. We are interested in using motion capture data of a human actor to control the motorized marionette as a way of easily creating new performances. We use data from the hand-operated marionette both as a way of assessing the performance of the motorized marionette and to explore whether this technology could be used to preserve marionette performances. The human motion data must be extensively adapted for the marionette because its kinematic and dynamic properties differ from those of the human actor in degrees of freedom, limb length, workspace, mass distribution, sensors, and actuators. The motion from the hand-operated marionette requires less adaptation because the controls and dynamics are a closer match. Both data sets are adapted using an inverse kinematics algorithm that takes into account marker positions, joint motion ranges, string constraints, and potential energy. We also apply a feedforward controller to prevent extraneous swings of the hands. Experimental results show that our approach enables the marionette to perform motions that are qualitatively similar to the original human motion capture data.


2014 ◽  
Vol 568-570 ◽  
pp. 676-680
Author(s):  
Si Xi Chen ◽  
Shu Chen

The application of digital technology on the protection of intangible cultural heritage is a major topic of research in recent years. The motion capture technology of protection will gradually replace the traditional recording methods such as texts, pictures and videos. It is valuable to build a high-fidelity, high-modular and low-cost digital platform for choreographic data collection and extended application. This paper studies the intangible cultural heritage of Quanzhou breast-clapping dance, one of the most famous choreographic intangible cultural heritages from China with standard optical motion capture method. The data are acquiring and processing after the dance motion capture, we binds the motion data and three-dimensional model using Motion Builder and build digital demonstration platform base on an OGRE engine to display the movements. The viewer can view at any angle and distance. The system can be easily applied in motion intangible cultural heritages protection project. Furthermore, the system can be provided versatile motion data for additional use.


2007 ◽  
Vol 07 (04) ◽  
pp. 641-662
Author(s):  
CHAN JONG PARK ◽  
KWANG YUN WOHN

We propose a sensor fusion technique for motion capture system. In our system, two kinds of sensors are used for mutual assistance. Six magnetic sensors are attached on the arms and feet for assisting twelve optical markers and six optical markers, which are attached on the arms and feet of a performer, respectively. The optical marker information is not always complete because the optical markers can be hidden due to obstacles. In this case, magnetic sensor information is used to link discontinuous optical marker information. We use a system identification technique for modeling the relation between the two signals of sensor and marker. We determine the best model from the set of candidate models using the canonical system identification technique. In order to show the efficiency of the proposed system, experiments are performed for motion capture data obtained from both the optical and magnetic motion capture system, and the animation results are shown.


2020 ◽  
pp. 1-8
Author(s):  
Jonathan S. Dufour ◽  
Alexander M. Aurand ◽  
Eric B. Weston ◽  
Christopher N. Haritos ◽  
Reid A. Souchereau ◽  
...  

The objective of this study was to test the feasibility of using a pair of wearable inertial measurement unit (IMU) sensors to accurately capture dynamic joint motion data during simulated occupational conditions. Eleven subjects (5 males and 6 females) performed repetitive neck, low-back, and shoulder motions simulating low- and high-difficulty occupational tasks in a laboratory setting. Kinematics for each of the 3 joints were measured via IMU sensors in addition to a “gold standard” passive marker optical motion capture system. The IMU accuracy was benchmarked relative to the optical motion capture system, and IMU sensitivity to low- and high-difficulty tasks was evaluated. The accuracy of the IMU sensors was found to be very good on average, but significant positional drift was observed in some trials. In addition, IMU measurements were shown to be sensitive to differences in task difficulty in all 3 joints (P < .05). These results demonstrate the feasibility for using wearable IMU sensors to capture kinematic exposures as potential indicators of occupational injury risk. Velocities and accelerations demonstrate the most potential for developing risk metrics since they are sensitive to task difficulty and less sensitive to drift than rotational position measurements.


Author(s):  
N.D. Yusubov ◽  
H.M. Abbasova

The article discusses the technology capabilities of multi-purpose CNC machines, and possible options for implementing parallel multi-tool processing. It was revealed that the technological capabilities of these machines are used at best by 50% in factories. This is due to the lack of recommendations for the design and use of such adjustments for these machines. To this end, generalised lattice matrix models of the accuracy of multi-tool machining have been developed in order to fulfill the requirements of algorithmic uniformity models and their structural transparency. The use of lattice matrices greatly simplifies the error in model of multi-tool machining and makes it extremely visual. Also, full-factorial distortion models and scattering fields of the dimensions of multi-tool machining performed on modern multi-purpose CNC lathe machines have been developed to take into account the angular displacements of the workpiece when machining parts with prevailing overall dimensions. They take into account the flexibility of the technological system for all six degrees of freedom to identify the influence degree of complex of technological factors on the machining accuracy (structure of multi-tool adjustment, deformation properties of subsystems of a technological system, cutting conditions). A methodology has been developed for determining the complex characteristics of compliance of a technological system. On the basis of the developed accuracy models in spatial adjustments, it is possible to develop recommendations for the design of adjustments for modern multi-purpose machines in CNC turning group (creation of CAD of multi-tool machining). Thus, it is possible to achieve a number of ways to control multi-tool machining, including improving the structure of multi-tool adjustment, calculating the limiting cutting conditions.


2013 ◽  
Vol 416-417 ◽  
pp. 1341-1345 ◽  
Author(s):  
Guang Tian Shi ◽  
Shuai Li

Because the mechanical motion capture system can only capture the motion data of the human body and it can`t achieve the positioning function in three-dimensional space, therefore, it is only suitable for capturing just one person's motion data. This paper will introduce the UWB positioning technology to the multiplayer mechanical motion capture system, the system through the mechanical motion capture technology to get the motion data of performers and using UWB positioning technique to obtain the coordinate data of each performer, then through the integration and calculation of the above two kinds of data, the system will acquire the complete motion data of each performer.


Author(s):  
Stefan Atay ◽  
Gregory Buckner ◽  
Matthew Bryant

Abstract This paper presents a rigorous analysis of a promising bi-modal multirotor vehicle that can roll and fly. This class of vehicle provides energetic and locomotive advantages over traditional unimodal vehicles. Despite superficial similarities to traditional multirotor vehicles, the dynamics of the vehicle analyzed herein differ substantially. This paper is the first to offer a complete and rigorous derivation, simulation, and validation of the vehicle's terrestrial rolling dynamics. Variational mechanics is used to develop a six degrees-of-freedom dynamic model of the vehicle subject to kinematic rolling constraints and various nonconservative forces. The resulting dynamic system is determined to be differentially flat and the flat outputs of the vehicle are derived. A functional hardware embodiment of the vehicle is constructed, from which empirical motion data are obtained via odometry and inertial sensing. A numerical simulation of the dynamic model is executed, which accurately predicts complex dynamic phenomena observed in the empirical data, such as gravitational and gyroscopic nonlinearities; the comparison of simulation results to empirical data validates the dynamic model.


Sign in / Sign up

Export Citation Format

Share Document