Research on Relationship of Polarization and Rayleigh Backscatter in Bidirectional Fiber Communication Systems

2013 ◽  
Vol 312 ◽  
pp. 625-630
Author(s):  
Yan Hong Wang ◽  
Gao Wang ◽  
Ji Liu

In this paper, the general theory and polarization property of RB in single mode fiber is discussed. According to the theoretical analysis results, the bidirectional carrying system with a polarization rotating device for analog radio frequency (RF) signal is set up. The relationship of the system CRN and the different polarization state by the polarization rotating device is studied. The results show that the RB light polarization state of backward fiber end can keep to perpendicular to that of forward light when backward lights polarization is orthogonal forward lights polarization. So utilizing orthogonal polarization method for decreasing CRN can be carried on. The system performance is analyzed by simulation. The simulation results show that CRN of the bidirectional communication system on a single mode fiber can be inhibited by using the method and RB light can decrease by an order of magnitude.

1981 ◽  
Vol 17 (6) ◽  
pp. 897-906 ◽  
Author(s):  
F. Favre ◽  
L. Jeunhomme ◽  
I. Joindot ◽  
M. Monerie ◽  
J.C. Simon

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Nandan Singh ◽  
Charles Kin Fai Ho ◽  
Guo Xin Tina ◽  
Manoj Kumar Chandra Mohan ◽  
Kenneth Eng Kian Lee ◽  
...  

We report charge-compensated modified uni-traveling-carrier photodiodes (MUTC-PDs) with high photocurrent and fast response, grown using liquid group-V precursor, in an AIXTRON MOCVD system. The liquid group-V precursors involve less toxicity with better decomposition characteristics. Device fabrication is completed with standard processing techniques with BCB passivation. DC and RF measurements are carried out using a single mode fiber at 1.55 μm. For a 24-μm-diameter device (with diode ideality factor of 1.34), the dark current is 32.5 nA and the 3-dB bandwidth is ≫20 GHz at a reverse bias of 5 V, which are comparable to the theoretical values. High photocurrent of over 150.0 mA from larger diameter (>60 μm) devices is obtained. The maximum DC responsivity at 1.55 μm wavelength is 0.51 A/W, without antireflection coating. These photodiodes play a key role in the progress of the future THz communication systems.


2011 ◽  
Vol 23 (3) ◽  
pp. 170-172 ◽  
Author(s):  
Xiujie Tian ◽  
Xusheng Cheng ◽  
Weiwei Qiu ◽  
Yanhua Luo ◽  
Qijin Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marta Nespereira ◽  
João M. P. Coelho ◽  
José Manuel Rebordão

The response of ultrashort-length CO2-induced long-period fiber grating (LPFG) sensors to torsion is reported. While engraving using CO2 laser radiation, the fiber is submitted to high tension allowing the obtainment of gratings with shorter lengths, down to 2.4 mm, which is almost one order of magnitude lower than the usual. Also, the fiber is only irradiated in one side, creating an asymmetrical profile leading to highly birefringent gratings. Sensitivity to axial twists is demonstrated, with values up to 0.15 nm/(rad/m) for the resonant wavelength shift and higher than 0.03 dBm/(rad/m) for the variation in the intensity (attenuation). Discrimination between rotation directions, clockwise and counterclockwise, was observed.


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 103
Author(s):  
Xiao Hu ◽  
Jun Guo ◽  
Lei Li ◽  
Seongwoo Yoo ◽  
Dingyuan Tang

We investigated—both experimentally and numerically—the operation of a weakly birefringent cavity fiber laser under different net cavity dispersion values. Experimentally, we found that under coherent cross-polarization coupling, either in-phase or anti-phase low frequency intensity modulations between the two orthogonal polarization components of the laser emission could be obtained. The evolution of the periodic intensity modulations in the fiber laser under different operation conditions was studied. In this paper, we show that under suitable conditions, they can be shaped into a train of bright-bright, dark-dark, or dark-bright vector solitons.


Sign in / Sign up

Export Citation Format

Share Document