Effects of Cutting Condition on Surface Roughness when Turning Untreated and Sb-Treated Al-11%Si Alloys Using PVD Coated Tools

2013 ◽  
Vol 315 ◽  
pp. 413-417 ◽  
Author(s):  
Mohsen Marani Barzani ◽  
Mohd Yusof Noordin ◽  
Ali Akhavan Farid ◽  
Saaed Farahany ◽  
Ali Davoudinejad

Surface roughness is an important output in different manufacturing processes. Its characteristic affects directly the performance of mechanical components and the fabrication cost. In this current work, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness in turning the untreated and Sb-treated Al-11%Si alloys. Experimental trials carried out using PVD TIN coated inserts. Experiments accomplished under oblique dry cutting when three different cutting speeds have been used at 70, 130 and 250 m/min with feed rates of 0.05, 0.1 and 0.15 mm/rev, whereas depth of cut kept constant at 0.05 mm. The results showed that Sb-treated Al-11%Si alloys have poor surface roughness in comparison to untreated Al-11%Si alloy. The surface roughness values reduce with cutting speed increment from 70 m/min to 250 m/min. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.

2012 ◽  
Vol 234 ◽  
pp. 74-77 ◽  
Author(s):  
Mohsen Marani Barzani ◽  
Mohd Yusof Noordin ◽  
Saaed Farahany ◽  
Ali Ourdjini

One of the important aspects of machining is the measurement of the cutting forces acting on the tool. The information of forces is required for evaluation of power requirements, designing tool holder, machine tool elements and fixture. In this research, the effect of cutting condition on cutting force when turning untreated Al-11%Si-1.8%Cu and Sb-treated alloys was investigated. PVD TiN coated insert as cutting tool under oblique dry cutting process utilized. Experiments were conducted at three different cutting speeds of 70, 130 and 250 m/min with feed rates of 0.05, 0.1 and 0.15 mm/rev, whereas depth of cut was kept constant at 0.05 mm. The results revealed that turning of Sb-treated alloys requires higher cutting force in comparison to untreated alloy. The cutting force values increased about four times with increasing feed rate from 0.05 mm/rev to 0.15 mm/rev. Furthermore, the cutting force decreased with increasing cutting speed from 70 m/min to 250 m/min.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2011 ◽  
Vol 117-119 ◽  
pp. 1561-1565
Author(s):  
Muhammad Yusuf ◽  
Mohd Khairol Anuar Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

This paper describes effect of cutting parameters on surface roughness for turning of aluminium alloy 7050 using carbide cutting tool with dry cutting condition. The model is developed based on cutting speed, feed rate and depth of cut as the parameters of cutting process. The selection of cutting process was based on the design of experiments Response Surface Methodology (RSM). The objective of this research is finding the optimum cutting parameters based on surface roughness. The relation between cutting parameters and surface roughness were discussed.


2015 ◽  
Vol 1119 ◽  
pp. 617-621
Author(s):  
Mohsen Marani Barzani ◽  
Ahmed A.D. Sarhan ◽  
Saeed Farahani ◽  
Ramesh Singh

In this study, an experimental investigation was conducted to determine the effects of cutting speeds and feed rates on surface roughness in turning of the Al %11Si and Al-11%Si-1% Bi die cast alloys. Experimental trials carried out on a CNC machine using coated carbide inserts (PVD). Three different cutting speeds, 70, 130 and 250 m/min and three feed rates 0.05, 0.1 and 0.15 mm/rev were used with a 0.15 mm constant depth of cut for all experiments. Additionally scanning electron microscope (SEM) was employed to clarify the different types of silicon morphology. Results revealed that surface roughness increased with increasing feed rate from 0.05 to 0.15 mm/rev and decreased with increasing cutting speed from 70 to 250 m/min. The result showed that workpiece containing Bi had the best surface roughness with lamellar silicon shape in comparison with aluminium-silicon with flake-silicon shape.


2013 ◽  
Vol 315 ◽  
pp. 841-845
Author(s):  
Noor Hakim Rafai ◽  
Mohd Hilmi Othman ◽  
Sulaiman Hasan ◽  
Tharmaah Rao A/L Sinnasalam

This research is an approach to investigate the effect of cutting condition on surface roughness in dry and flood cutting of AISI 1030. The objectives of this project are to compare the plastic injection mould quality between dry and flood cutting condition, as well as to determine the best cutting condition. The parameters used were depth of cut (0.25mm, 0.5mm, and 1.0mm), feed rate (50mm/rev, 100mm/rev and 150mm/rev) and cutting speed (700m/min, 1400m/min and 2100m/min). Surface roughness value was used to determine to quality characteristic of the machined mould. The experiments were done using Mazak CNC milling machine and the material selected was AISI 1030, which is a medium tensile and low hardenability carbon steel. Twenty-seven runs were done in both dry and flood cutting, adapting Taguchi Method - Orthogonal Array. After each machining, the surface roughness was measured using Mitutoyo Surface Roughness Tester. The data obtained was then analyzed through Signal to Noise Ratio calculation. This analysis produced the best combination of parameters which gives the lowest surface roughness. The best combinations for dry cutting are 2100m/min for cutting speed, 50mm/rev for feed rate and 0.25mmfor depth of cut. As for flood cutting, the best combinations are 2100m/min for cutting speed, 50mm/rev for feed rate and 1.0mm for depth of cut. The surface roughness obtained using this parameter in dry cutting is 0.27Ám and 0.40Ám in flood cutting. From the comparison, it is proved that dry cutting produced lower surface roughness compared to flood cutting.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1796-1802 ◽  
Author(s):  
A. G. JAHARAH ◽  
C. H. CHE HASSAN ◽  
M. J. GHAZALI ◽  
A. B. SULONG ◽  
M. Z. OMAR ◽  
...  

This paper presents the performance of uncoated carbide cutting tool when machining cast iron in dry cutting conditions. Experiments were conducted at various cutting speeds, feed rates, and depths of cut according to Taguchi method design of experiment using a standard orthogonal array L 9(34). The effects of cutting speeds (100-146 m/min), feed rates (0.20-0.35 mm/tooth) and depths of cut (1.0-2.0 mm) on the tool life, surface roughness and cutting forces were evaluated using ANOVA. Results showed that the effects of cutting speed, depth of cut and the feed rate were similar affecting the failure of the carbide cutting tools within the range of tested machining parameters. The contribution of cutting speed, feed rate, and depth of cut in controlling the tool life were 32.12%, 38.56% and 29.32% respectively. Whereas, the cutting speed was the main factor influencing the average surface roughness (Ra) value followed by feed rate. These factors contribute 60.53% and 35.59% respectively to the Ra value. On the other hand, cutting forces generated were greatly influenced by the depth of cut (66.52%) and the feed rate (32.6%). Cutting speed was found insignificant in controlling the generated cutting forces.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
M. S. Said ◽  
J. A. Ghani ◽  
R. Othman ◽  
M. A. Selamat ◽  
N. N. Wan ◽  
...  

The purpose of this research is to demonstrate surface roughness and chip formation by the machining of Aluminium silicon alloy (AlSic) matrix composite, reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L9 (34). The effects of cutting speeds, feed rates, depths of cut, and types of tool on surface roughness during the milling operation were evaluated using Taguchi optimization methodology, using the signal-to-noise (S/N) ratio. The surface finish produced is very important in determining whether the quality of the machined part is within specification and permissible tolerance limits. It is understood that chip formation is a fundamental element that influences tool performance. The analysis of chip formation was done using a Sometech SV-35 video microscope. The analysis of results, using the S/N ratio, concluded that a combination of low feed rate, low depth of cut, medium cutting speed, and an uncoated tool, gave a remarkable surface finish. The chips formed from the experiment varied from semi–continuous to discontinuous. 


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


Author(s):  
R Thirumalai ◽  
JS Senthilkumaar ◽  
P Selvarani ◽  
S Ramesh

Extensive researchers have conducted several experiments in the past for selecting the optimum parameters in machining nickel based alloy – Inconel 718. These experiments conducted so far are dealt with dry machining and flooded coolant machining of nickel alloy Inconel 718. In this research study, the usage of refrigerated coolant is also dealt with and it is compared with dry machining and flooded coolant machining. Cutting speed, feed and depth of cut are considered as the machining parameters. The effectiveness of the refrigerated coolant in machining the heat resistant super alloy material Inconel 718 with respect to these machining parameters are described in this article. The machinability studies parameters were generated with surface roughness and flank wear. The performance of uncoated carbide cutting tool was investigated at various cutting condition under dry, flooded coolant and refrigerated coolant machining. The relationship between the machining parameters and the performance measures were established and using analysis of variance significant machining parameters determined. This article made an attempt to Taguchi optimization technique to study the machinability performances of Inconel 718. Taguchi approach is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer experiments than a factorial design. Taguchi’s optimization analysis indicates that the factors level, its significance to influence the surface roughness and flank wear for the machining processes. Confirmation tests were conducted at an optimal condition to make a comparison between the experimental results foreseen from the mentioned correlations.


Sign in / Sign up

Export Citation Format

Share Document