Modal Analysis and Design of Six Dimensional Vibration Damping Device Based on Hexapod Platform

2010 ◽  
Vol 33 ◽  
pp. 128-131
Author(s):  
Wei Zhu ◽  
De Jun Kong ◽  
Ai Ping Hu

A six dimensional vibration damping device is introduced which is composed of Hexapod parallel mechanism and six controllable damp units fixed on driving pairs. Firstly, the structure of the system is designed according to theory of the Hexapod mechanism. Then, Jacobian matrix and dynamics model are discussed successively. Lastly, a six dimensional vibration model is found by using ADAMS software. Through theory and simulation analysis, it has been approved that the system can be used to control six dimensional vibrations.

2011 ◽  
Vol 128-129 ◽  
pp. 1151-1156 ◽  
Author(s):  
Jun Luo ◽  
Qi Ming Guo ◽  
Heng Yu Li ◽  
Chao Jiong Huang ◽  
Shao Rong Xie

In order to realize stable tracking under bumpy environment, the robot bionic eye constructed by spherical parallel mechanism with 3 DOF is designed based on the characteristics of human being’s eyes. ANSYS and ADAMS are utilized to conduct modal and kinematics property analysis respectively. According to the result of ANSYS modal analysis, the structure highly meets the demands of function and reliability, which lays the foundation for optimization and bump-resistance design. Through ADAMS kinematics analysis, displacement, velocity and acceleration curves of mechanism end effector were obtained, which provides reference for motion control and optimization design.


2013 ◽  
Vol 389 ◽  
pp. 590-595
Author(s):  
Huan Gong Wang ◽  
Xiao Qing Wu ◽  
Li Ping Wang ◽  
Ning Min Kang

This paper takes a parallel mechanism of a loading test device, analyzes a degree of freedom of the parallel mechanism, builds a geological model in ADAMS software, applies restriction and load, and sets a performance function; this paper solves the problem of Jacobian matrix ambiguity of the parallel mechanism through releasing three kinematic pairs in ADAMS, transforms the solved angle to Euler angle of coordinate series of two parts through local coordinate system of ADAMS, simulates and solves the included angle movement scale between following ground jack 5 and dynamic and static platforms through the performance function of ADAMS, thereby providing accordance for the design of the loading test device.


2010 ◽  
Vol 4 (4) ◽  
pp. 346-354 ◽  
Author(s):  
Yukio Takeda ◽  
◽  
Xiao Xiao ◽  
Kazuya Hirose ◽  
Yoshiki Yoshida ◽  
...  

The present paper proposes a new six-DOF parallel mechanism with three connecting chains. This mechanism can have a large angle of orientation of the output link. Joints in each connecting chain are arranged from the base in order of revolute, prismatic, spherical and revolute joints. All three revolute joints on the base are coaxial. With this structure, the output link can perform a full rotation around the vertical axis. The orientation capability of this mechanism is demonstrated. Equations for displacement analysis and the Jacobian matrix are derived. A design and prototype of this mechanism for a pipe-bender are shown.


2012 ◽  
Vol 271-272 ◽  
pp. 762-766
Author(s):  
Ling He ◽  
Gao Qi Zhang ◽  
Heng Yu Wu ◽  
Ya Li Lei ◽  
Zhi Gang Wang

This paper increases product modal frequency and improves machine dynamic performance while ensuring product static accuracy in method of design, simulation analysis, and testing verification for the purpose of improvement of PCB boring machine gantry support frame integrated modal based on Abaqus finite element software platform as well as Impact Testing module and Modal Analysis module of Test.lab


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


2010 ◽  
Vol 154-155 ◽  
pp. 1481-1484 ◽  
Author(s):  
Jun Zhong Guo ◽  
Jun Ping Yang

The on-off pressure mechanism has an important function to the printing press, the quality of which concerns the working performance of the printing machine and the quality of printed products directly. In this paper, the pneumatic on-off pressure mechanism is discussed; the work demand of order on-off pressure is analyzed. In addition, the three-dimensional digital model and the kinematic analysis process can be achieved on the basis of ADAMS software. What’s more, the on pressure value in the process of on pressure is derived from the kinematic analysis. Lastly, the relation between the motion of on-off pressure mechanism and cylinder’s angular displacement is analyzed, an important basis to the on-off pressure mechanism’s optimal design will be provided.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Author(s):  
ChiHyo Kim ◽  
KunWoo Park ◽  
TaeSung Kim ◽  
MinKi Lee

This paper designs a four legged parallel mechanism to improve the dexterity of three layered parallel walking robot. Topology design is conducted for a leg mechanism composed of four legs, base and ground, which constitute a redundant parallel mechanism. This mechanism is subdivided into four sub-mechanism composed of three legs. A motor vector is adopted to determine the 6×8 Jacobian of the redundant parallel mechanism and the 6×6 Jacobian of the sub-mechanisms, respectively. The condition number of the Jacobian matrix is used as an index to measure a dexterity. We analyze the condition numbers of the Jacobian over the positional and orientational walking space. The analytical results show that a sub-mechanism has lots of singularities within workspace but they are removed by a redundant parallel mechanism improving the dexterity. This paper presents a parallel typed walking robot to enlarge walking space and stability region. Seven types of three layered walking robots are designed by inserting an intermediate mechanism between the upper and the lower legged parallel mechanisms. They provide various types of gaits to walk rough terrain and climb over a wall with small degrees of freedom.


2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


Sign in / Sign up

Export Citation Format

Share Document