Comparative Studies on Damage Detection Based on Dynamic Response of a Beam Subjecting to Moving Load

2013 ◽  
Vol 330 ◽  
pp. 925-930
Author(s):  
Wei Wei Zhang ◽  
Hong Wei Ma

In this paper, the feasibility and sensitivity of damage detection based on dynamic responses of a simply supported beam were examined theoretically and numerically, which were the displacement, velocity and acceleration histories at mid-span on a beam under the moving load. First, the theoretic background of a damage beam vibration subjecting to moving load was briefly described. And then a finite element method was used to calculate the responses of the beam. Using wavelet transform of the dynamic responses, the damage could be identified. Case studies showed that the velocity response was sensitive to the damage and the simulations illustrated the better quality of damage detection by velocity than the ones by displacement and acceleration.

2013 ◽  
Vol 569-570 ◽  
pp. 854-859 ◽  
Author(s):  
Wei Wei Zhang ◽  
Jia Geng ◽  
Zi Long Zhao ◽  
Zhi Hua Wang

In this paper, the possibility and validity of damage detection based on velocity response of a simply supported beam under the moving load are examined theoretically and numerically. It includes the following parts: First, the theoretic background of the beam vibration subjecting to moving load is briefly described. And then, the velocity responses of a simple supported beam are calculated by software Ansys. Using wavelet transform, the damage location can be identified successfully. At last, the effects of noise and load speed are discussed in detail. Numerical studies show the validity of the proposed method and a good noise tolerance using the velocity response.


2013 ◽  
Vol 788 ◽  
pp. 493-497
Author(s):  
Hua Jie Zhou

Big vibration will be cause by train load and crane load in the over-track buildings, and then generate structure-borne moise in the buildings, which will affect the live quality of the people lived in the buildings greatly. Focusing on this proble, three finite element method is established based on a practical engineering. The measures of reducing noise and vibration is proposed according the characteristics of the building, which is to replace the steel column as concrete column. The dynamic responses of the building under the two cases are calculated and analyzed. The computation results show that the measurement can reduced structure vibration significantly, and accordingly, the structure-borne noise is also reduced greatly. The research results in the paper have strong engineering practicability and can provide some references for some other projections in China in future.


2017 ◽  
Vol 24 (18) ◽  
pp. 4226-4246 ◽  
Author(s):  
Sajjad Pirboudaghi ◽  
Reza Tarinejad ◽  
Mohammad Taghi Alami

The aim of the present study is to propose a procedure for seismic cracking identification of concrete dams using a coupling of the extended finite element method (XFEM) based on cohesive crack segments (XFEM-COH) and continuous wavelet transform (CWT). First, the dam is numerically modeled using the traditional finite element method (FEM). Then, cracking capability is added to the dam structure by applying the XFEM-COH for concrete material. The results of both the methods under the seismic excitation have been compared and identified to damage detection purposes. In spite of predefined damage in some of the structural health monitoring (SHM) techniques, there is an advantage in the XFEM model where the whole dam structure is potentially under damage risk without initial crack, and may not crack at all. Finally, in order to evaluate any change in the system, that is, specification of any probable crack effects and nonlinear behavior, the structural modal parameters and their variation have been investigated using system identification based on the CWT. The results show that the extended finite element–wavelet transform procedure has high ability for the online SHM of concrete dams that by analysis of its results, the history of physical changes, cracking initiation time, and exact damage localization have been performed from comparing the intact (FEM) and damaged (XFEM) modal parameters of the structural response. In addition, any small change in the system is observable while the final crack profile and performance simulation of the dam body under strong seismic excitations have obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Chaoyang Wu ◽  
Hao Wang ◽  
Jingnan Zhao ◽  
Xin Jiang ◽  
Qiu Yanjun ◽  
...  

This study developed two-and-half dimensional (2.5-D) finite element method (FEM) to predict viscoelastic pavement responses under moving loads and nonuniform tire contact stresses. The accuracy of 2.5-D FEM was validated with two analytical solutions for elastic and viscoelastic conditions. Compared to three-dimensional (3-D) FEM, the computational efficiency of the 2.5-D method was greatly improved. The effects of loading pattern and speed on pavement surface deflection and strain responses were analyzed for asphalt pavements with four different asphalt layer thicknesses. The analyzed pavement responses included surface deflections, maximum tensile strains in the asphalt layer, and maximum compressive strains on top of subgrade. The loading patterns have influence on the mechanical responses. According to the equivalent rule, the point load, rectangle type, and sinusoid-shape contact stresses were studied. It was found that the point load caused much greater pavement responses than that of the area-based loading. When the tire loading was simplified as uniform contact stress in rectangular area, the maximum tensile strains in the asphalt layer varied with the width/length ratio of contact area. Additionally, it was shown that the dynamic responses of pavement structure induced by the sinusoid-shape contact stresses and realistic nonuniform stresses were quite similar to each other in all the cases. The pavement strain responses decreased as the speed increased due to viscoelastic behavior of asphalt layer. The study results indicate that asphalt pavement responses under moving load can be calculated using the proposed 2.5-D FEM in a fast manner for mechanistic-empirical pavement design and analysis.


2021 ◽  
Author(s):  
Gareth Forbes

This paper provides a breif description of the moving load problem (force or mass) across a structure. Development of a matlab script to solve the analytical equations of motion is provided. The method of implementation to solve this type of structural dynamics, using the Finite Element Method is then described with a matlab script for a simply supported beam provided. Additionally, a script and method for implementing the Finite Element Method using ANSYS APDL is also given.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

2013 ◽  
Vol 61 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. Jankowiak ◽  
T. Łodygowski

Abstract The paper considers the failure study of concrete structures loaded by the pressure wave due to detonation of an explosive material. In the paper two numerical methods are used and their efficiency and accuracy are compared. There are the Smoothed Particle Hydrodynamics (SPH) and the Finite Element Method (FEM). The numerical examples take into account the dynamic behaviour of concrete slab or a structure composed of two concrete slabs subjected to the blast impact coming from one side. The influence of reinforcement in the slab (1, 2 or 3 layers) is also presented and compared with a pure concrete one. The influence of mesh density for FEM and the influence of important parameters in SPH like a smoothing length or a particle distance on the quality of the results are discussed in the paper


2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


2014 ◽  
Vol 1061-1062 ◽  
pp. 809-812
Author(s):  
Hu Ping

In this paper, based on the finite element method and ANSYS software, the dynamic responses of permeable breakwater under wave load response is analyzed and studied. Taking the method of combining modal analysis and power spectrum analysis research on dynamic response of breakwater in the frequency domain and the principal stress and displacement distribution of the structure in the exceedance probability of 0.7%. The results prove that the finite element method of power spectral density analysis can provide effective guidance for the actual engineering.


Sign in / Sign up

Export Citation Format

Share Document