Prepare of the New Structure PbTiO3 Nanowires and the Study of the Reversible Bending

2013 ◽  
Vol 331 ◽  
pp. 522-526
Author(s):  
Jiang Wang ◽  
Jian Li ◽  
You Wen Wang

When the self-made with Teflon lined with stainless steel reaction kettle is used to produce PbTiO3 nanowires with the adoption of hydrothermal reaction , PbTiO3 nanowires with new structure can be made when Pb/Ti equals 2.2. Observed through the Transmission Electron Microscopy (TEM), the bending feature of the PbTiO3 nanowires can be observed for several times when X-ray diffraction (XRD) and Electron Backscattered Diffraction (EBSD) are used to analyse and test the crystal structure of the nanowires. The result of the study shows that the degree of the bending of the PbTiO3 nanowires varies with the intensity of the electron beam from the Transmission Electron Microscopy, and its process can be reversible.

2013 ◽  
Vol 745-746 ◽  
pp. 309-314 ◽  
Author(s):  
Si Min Yin ◽  
Gang Xu ◽  
Zhao Hui Ren ◽  
Chun Ying Chao ◽  
Ge Shen ◽  
...  

Perovskite lead titanate crystals with various morphologies were successfully synthesized via a hydrothermal reaction route with different lead sources. X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to characterize the phase composition and the morphology of the synthesized products. In order to investigate the effect of the lead source on the phase formation and morphology evolution of the synthesized pervoskite PbTiO3 crystals, PbO, PbF2, PbSO4 and Pb (CH3COO)3 ·3H2O, were used as starting precursor lead source introduced into the hydrothermal reaction system, respectively. Accordingly, perovskite PbTiO3 brken cubes, irregular particles, cubic particles, and microplates were obtained, respectively. Based on the experimental results, the effect of lead source was simply discussed.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1054-1057
Author(s):  
Xiang Zhang ◽  
Jin Liang Huang ◽  
Li Hua Li

ZnS: Cu/Fe nanocrystals were synthesized by hydrothermal method with thioglycolic acid as a stabilizer. The phases, grain size and luminescent properties of the nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fluorescence photometer respectively. The results showed that ZnS: Cu/Fe nanoparticles have a particle size about 7nm and possess a cubic zinc blende crystal structure. The luminous intensity of ZnS: Cu/Fe nanocrystals was strongly when they were reacted at 140°C for 12 hours.


2001 ◽  
Vol 15 (30) ◽  
pp. 1455-1458 ◽  
Author(s):  
H. CHEN ◽  
X. K. LU ◽  
S. Q. ZHOU ◽  
X. H. HAO ◽  
Z. X. WANG

Single phase AlN nanowires are fabricated by a sublimation method. They were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), typical selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The SEM and TEM images show that most of the nanowires have diameters of about 10–60 nm. The crystal structure of AlN nanowires revealed by XRD, SAED and HRTEM shows the AlN nanowires have a wurtzite structure.


2007 ◽  
Vol 71 (5) ◽  
pp. 493-508 ◽  
Author(s):  
M. Polgári ◽  
B. Bajnóczi ◽  
V. Kovács Kis ◽  
J. Götze ◽  
G. Dobosi ◽  
...  

AbstractKutnohorite with moderate and bright orange-red cathodoluminescence (CL) was studied by CL microscopy and spectroscopy. This mineral was found in fossiliferous concretions composed mainly of rhodochrosite from the Mn-carbonate mineralization at Úrkút, Hungary. The CL microscopy reveals that kutnohorite occurs as impregnations, layers and veinlets. X-ray diffraction, infrared spectroscopy and electron microprobe studies indicate that the luminescent kutnohorite has excess Ca (72.9–80.0 mol.% CaCO3, 16.3–20.5 mol.% MnCO3, 3.3–5.6 mol.% MgCO3 and 0.0–0.5 mol.% FeCO3). Transmission electron microscopy shows that the luminescent carbonate has a dolomite-type structure, with modulated and mosaic microstructures. The CL spectra of this Ca-rich kutnohorite have a single emission band at 630 nm that is characteristic of Mn2+substitution in the structure. Our results provide evidence for moderate-to-bright cathodoluminescence of Mn-rich natural carbonates even at 8–10 wt.% Mn and up to 2400 ppm Fe. The self-quenching of Mn appears incomplete in the case of Ca-rich kutnohorite from Úrkút.


2010 ◽  
Vol 650 ◽  
pp. 193-198 ◽  
Author(s):  
Yuan Yuan Song ◽  
Xiu Yan Li ◽  
Fu Xing Yin ◽  
De Hai Ping ◽  
Li Jian Rong ◽  
...  

Tempering temperature dependence of the amount of the reversed austenite in the range of 570 oC to 680 oC was investigated by means of X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) in a low carbon Fe-13%Cr-4%Ni-Mo (wt.%) martensitic stainless steel. It was found that the reversed austenite began to form at the tempered temperature slightly above the As temperature. As the tempered temperature increased, the amount of the reversed austenite changed little in the temperature range of 580-595 oC. Then, the amount of the reversed austenite increased sharply with the increased tempered temperature. When the tempered temperature increased to about 620 oC, the amount of the reversed austenite exhibited a peak. Afterward, it decreased quickly at the elevated tempered temperature. The microstructural evolvement of the reversed austenite at different tempering temperature was also observed by TEM.


2016 ◽  
Vol 49 (6) ◽  
pp. 1967-1971 ◽  
Author(s):  
Ke Tong ◽  
Fei Ye ◽  
Honglong Che ◽  
Ming Kai Lei ◽  
Shu Miao ◽  
...  

The nitrogen-supersaturated phase produced by low-temperature plasma-assisted nitriding of austenitic stainless steel usually contains a high density of stacking faults. However, the stacking fault density observed in previous studies was considerably lower than that determined by fitting the X-ray diffraction pattern. In this work, it has been confirmed by high-resolution transmission electron microscopy that the strip-shaped regions of about 3–25 nm in width observed at relatively low magnification essentially consist of a series of stacking faults on every second {111} atomic plane. A microstructure model of the clustered stacking faults embedded in a face-centred cubic structure was built for these regions. The simulated X-ray diffraction and transmission electron microscopy results based on this model are consistent with the observations.


2016 ◽  
Vol 49 (5) ◽  
pp. 1818-1826 ◽  
Author(s):  
X.-Z. Li

In numerous research fields, especially the applications of electron and X-ray diffraction, stereographic projection represents a powerful tool for researchers. SPICA is a new computer program for stereographic projection in interactive crystallographic analysis, which inherits features from the previous JECP/SP and includes more functions for extensive crystallographic analysis. SPICA provides fully interactive options for users to plot stereograms of crystal directions and crystal planes, traces, and Kikuchi maps for an arbitrary crystal structure; it can be used to explore the orientation relationships between two crystalline phases with a composite stereogram; it is also used to predict the tilt angles of transmission electron microscopy double-tilt and rotation holders in electron diffraction experiments. In addition, various modules are provided for essential crystallographic calculations.


2011 ◽  
Vol 311-313 ◽  
pp. 485-488 ◽  
Author(s):  
Shuai Zhang ◽  
Qing Ping Ke ◽  
Lei Zhang ◽  
Tian Di Tang

Formation of layered nanosheets and micro-spheres from a simple self-assembly and polycondensation of n-octadecylsilane (PODS) in water and toluene is demonstrated, respectively. The structure of the micro-spheres was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). According to the TEM images, it was firstly confirmed that the micro-spheres consist of stacks of bilayered polymerized n-octadecylsilane with head-to-head arrangements. The co-effects of water and solvent were proposed to control the octadecyltrichlsilane hydrolysis process and eventually the morphology of the micro-spheres. A micelle formation mechanism for the formation of the PODS micro-spheres under the co-effects of water and solvent were firstly proposed.


2007 ◽  
Vol 26-28 ◽  
pp. 735-738
Author(s):  
Fei Li ◽  
Xiao Ping Zou ◽  
Jin Cheng

The multi-directional grown carbon nanofibers have been synthesized by catalytic combustion technique. Transmission electron microscopy and selected area electron X-ray diffraction were combined to characterize the carbon products and their catalyst, which promoted the formation of carbon nanofibers. The crystal structures of the catalyst were investigated. The present results indicate that the morphologies of the carbon nanofibers have a close relation with the crystal structure of the catalysts.


Sign in / Sign up

Export Citation Format

Share Document