Research on the Data Fusion of Wireless Sensor Network Based on Credibility

2013 ◽  
Vol 341-342 ◽  
pp. 1113-1115 ◽  
Author(s):  
He Pan ◽  
Tai Hao Li

The research on design of data fusion with safety credibility is a hot problem in wireless sensor networks. This paper presents a design of wireless sensor data fusion based on reputation, through the combination of data sensing and data fusion detection, it complete the data fusion algorithm and carries out the simulation test to verify the validity of this research.

2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2013 ◽  
Vol 756-759 ◽  
pp. 2316-2320
Author(s):  
Si Quan Hu ◽  
Xiao Li Zhang ◽  
Hui Yao ◽  
Chun Dong She

In the deployment of a wireless sensor network, a portable device can be used on protocol analysis or in-situ network diagnose, which is more convenient than the traditional gateway solution. In this paper, based on the Android devolvement board and TelosB mote, the Android terminal was built to collect data from a wireless sensor network composed of TelosB motes. The middleware was implemented on this Android terminal to parse the sensor data and store the data into databases. The evaluation process verified the deign feasibility.


Author(s):  
Sumathi V.

Wireless network led to the development of Wireless Sensor Networks (WSNs). A Wireless sensor network is a set of connected devices, sensors, and electronic components that can transmit the information collected from an observed field to the relevant node through wireless links. WSN has advanced many application fields. It can change any kind of technology that can modify the future lifestyle. WSNs are composed of tiny wireless computers that can sense the situation of atmosphere, process the sensor data, make a decision, and spread data to the environmental stimuli. Sensor-based technology has created several opportunities in the healthcare system, revolutionizing it in many aspects. This chapter explains in detail wireless sensor networks, their protocol, and performance metrics. The impact and role of the Biosensor in a wireless sensor network and healthcare systems are depicted. The integration of the computer engineering program into the WSNs is addressed.


2021 ◽  
Vol 183 ◽  
pp. 418-424
Author(s):  
Haitao Wang ◽  
Lihua Song ◽  
Jue Liu ◽  
Tingting Xiang

2017 ◽  
Vol 13 (07) ◽  
pp. 36
Author(s):  
Yuxia Shen

<p><span style="font-size: medium;"><span style="font-family: 宋体;">In wireless sensor networks, for improving the time synchronization perfromance of online monitoring and application of ZigBee protocol, a scheme is designed. For this objective, first of all, the ZigBee protocol specification is summarized, a profound analysis of the hardware abstraction architecture of TinyOS operating system is made; the advantages of the ZigBee protocol compared with the traditional radio technology are comparatively analyzed. At the same time, the node design block diagram based on CC2430 and related development system is provided. In the TinyOS2.x operating system, we analyze CC2430 application program abstract architecture, and on this basis, give the realization process of program design. The research results showed that we achieve an on-line monitoring system based on ZigBee protocol, which has realistic significance of applying ZigBee protocol in wireless sensor network of electrical equipment online monitoring. Based on the above research, it is concluded that the online monitoring system can collect the temperature parameters of the monitored object in real time that it can be widely applied in wireless sensor networks.</span></span></p>


2013 ◽  
Vol 321-324 ◽  
pp. 600-603
Author(s):  
Wei Liu ◽  
Qin Sheng Du ◽  
Le Le Wang

Wireless sensor networks integrated four technologies including sensor, embedded computing, network technology and wireless communication. It is a new type of non-infrastructure wireless network. In this paper, a data fusion method has been brought forward based on wireless sensor networks, and through an algorithm simulation test, It is proved that the algorithm is effective to reduce the energy consumption of the network, and extend the lifetime of the network.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


Author(s):  
Audrey NANGUE ◽  
◽  
Elie FUTE TAGNE ◽  
Emmanuel TONYE

The success of the mission assigned to a Wireless Sensor Network (WSN) depends heavily on the cooperation between the nodes of this network. Indeed, given the vulnerability of wireless sensor networks to attack, some entities may engage in malicious behavior aimed at undermining the proper functioning of the network. As a result, the selection of reliable nodes for task execution becomes a necessity for the network. To improve the cooperation and security of wireless sensor networks, the use of Trust Management Systems (TMS) is increasingly recommended due to their low resource consumption. The various existing trust management systems differ in their methods of estimating trust value. The existing ones are very rigid and not very accurate. In this paper, we propose a robust and accurate method (RATES) to compute direct and indirect trust between the network nodes. In RATES model, to compute the direct trust, we improve the Bayesian formula by applying the chaining of trust values, a local reward, a local penalty and a flexible global penalty based on the variation of successful interactions, failures and misbehaviors frequency. RATES thus manages to obtain a direct trust value that is accurate and representative of the node behavior in the network. In addition, we introduce the establishment of a simple confidence interval to filter out biased recommendations sent by malicious nodes to disrupt the estimation of a node's indirect trust. Mathematical theoretical analysis and evaluation of the simulation results show the best performance of our approach for detecting on-off attacks, bad-mouthing attacks and persistent attacks compared to the other existing approaches.


Author(s):  
Smriti Joshi ◽  
Anant Kr. Jayswal

Energy efficiency is the kernel issue in the designing of wireless sensor network(WSN) MAC protocols. Energy efficiency is a major consideration while designing wireless sensor network nodes. Most sensor network applications require energy autonomy for the complete lifetime of the node, which may span up to several years. These energy constraints require that the system be built such that Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. Each component consumes minimum possible power, ensure the average successful transmission rate, decrease the data packet average waiting time, and reduce the average energy consumption. Influencing by the design principles of traditional layered protocol stack, current MAC protocol designing for wireless sensor networks (WSN) seldom takes load balance into consideration, which greatly restricts WSN lifetime. As a novel Forwarding Election-based MAC protocol, is presented to prolong WSN lifetime by means of improving energy efficiency and enhancing load balance.


Sign in / Sign up

Export Citation Format

Share Document