direct trust
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Subiksha. V

Abstract: Due to the characteristics like limited resources and dynamic topology, wireless sensor networks (WSNs) are facing two major problems such as security and energy consumption. To deal with various improper behaviors of nodes the trust-based solutions are possible but still exist a variety of attacks, high energy consumption, and communication congestion between nodes. Therefore, this paper proposes an advanced and efficient trust-based secure and energy-efficient routing protocol (TBSEER) to solve these network problems and to avoid malicious nodes. Efficient Adaptable Ant Colony Optimization Algorithm (EAACO) calculates the comprehensive trust value through adaptive direct trust value, indirect trust value, and energy trust value, which can be resistant to internal network attacks such as sinkhole, black hole, selective forwarding, and hello flood attacks. In addition, to fast identify the malicious nodes in the WSN, the adaptive penalty mechanism and volatilization factor are used. Moreover, the nodes only need to calculate the direct trust value, and the indirect trust value is obtained by the sink, so as to further reduce the energy consumption caused by iterative calculations. To actively avoid network attacks, the cluster heads find the safest multi-hop routes based on the comprehensive trust value. The simulation results show that the proposed EAACO reduces network energy consumption, speeds up the identification of malicious nodes, as well as resists all common attacks. Keywords: Comprehensive trust value, direct trust value, indirect value, EAACO, network attacks, wireless sensor networks


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1487
Author(s):  
Zenan Wu ◽  
Liqin Tian ◽  
Yi Zhang ◽  
Zhigang Wang

With the development of society and information technology, people’s dependence on the Internet has gradually increased, including online shopping, downloading files, reading books, and online banking. However, how to ensure the safety and legitimacy of these network user behaviors has become the focus of attention. As we all know, cybersecurity and system resilience originate from symmetry. Due to the diversity and unpredictability of cyber-attacks, absolute cybersecurity is difficult to achieve; system resilience indicates that protecting system security should shift from resisting attacks to ensuring system continuity. The trust evaluation of network users is a research hotspot in improving network system security. Aiming at the defects of incomplete evaluation processes and inaccurate evaluation results in current online user behavior trust evaluation methods, this paper combines the basic principles of online user trust evaluation and proposes a trust evaluation model that combines fuzzy Petri nets with user behavior analysis. First, for “unfamiliar” users, we used fuzzy Petri nets to calculate the user’s recommended trust value as the system’s indirect trust value; next, we used the user’s behavior record as evidence to conduct direct trust evaluation on the user to obtain the system’s direct trust in the user’s value; finally, the two calculation results were combined to obtain the user’s comprehensive trust value. In terms of experimental verification, the experimental data came from a self-developed e-book management system. Through theoretical analysis and simulation results, it was shown that the model met the optimization conditions of subjective and objective relative balance, the evaluation process was more complete, and the trust evaluation values of network users could be obtained more accurately. This evaluation method provides solid theory and research ideas for user credibility judgment of key network basic application platforms such as online shopping malls, online transactions, and online banking.


This paper devises a routing method for providing multipath routing inan IoT network. Here the Fractional Artificial Bee colony(FABC)algorithm is devised for initiating clustering process. Moreover the multipath routing is performed by the newly devised optimization technique, namely Adaptive-Sunflower based grey wolf(Adaptive-SFG)optimization technique which is designed by incorporating adaptive idea in Sunflower based grey wolf technique. In addition the fitness function is newly devised by considering certain factors that involves Context awareness, link lifetime Energy, Trust, and Delay.For the computation of the trust, additional trust factors like direct trust indirect trust recent trust and forwarding rate factor is considered. Thus, the proposed Adaptive SFG algorithm selects the multipath for routing based on the fitness function.Finally, route maintenance is performed to ensure routing without link breakage.The proposed Adaptive-SFG outperformed other methods with high energy of0.185Jminimal delay of 0.765sec maximum throughput of47.690%and maximum network lifetime of98.7%.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Francis H. Shajin ◽  
Paulthurai Rajesh

Purpose This study aims to evaluate the direct trust value for each node and calculate the trust value of all nodes satisfying the condition and update the trust value and value each trust update interval for a secure and efficient communication between sender and destination node. Hence, a Trusted Secure Geographic Routing Protocol (TSGRP) has been proposed for detecting attackers (presence of the hacker), considering the trust value for a node produced by combining the location trusted information and the direct trusted information. Design/methodology/approach Amelioration in the research studies related to mobile ad hoc networks (MANETs) and wireless sensor networks has shown greater concern in the presence of malicious nodes, due to which the delivery percentage in any given network can degrade to a larger extent, and hence make the network less reliable and more vulnerable to security. Findings TSGRP has outperformed the conventional protocols for detecting attacks in MANET. TSGRP is establishing a trust-based secure communication between the sender and destination node. The evaluated direct trust value is used after the transmission of route-request and route-reply packets, to evaluate the direct trust value of each node and a secure path is established between the sender and the destination node. The effectiveness of the proposed TSGRP is evaluated through NS-2 simulation. Originality/value The simulation results show the delay of the proposed method is 92% less than PRISM approach and the overhead of the proposed TSGRP approach is 61% less than PRISM approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Congcong Shi ◽  
Jiaxuan Fei ◽  
Xiaojian Zhang ◽  
Qigui Yao ◽  
Jie Fan

In power Internet of Things environment, the existing border-based protection system and the “one-time authentication, one-time authorization, and long-term effective” approach are difficult to deal with the threat of attacks from internal and external devices and users with legal authority. In order to solve the problem of authorized access of power equipment and users, combined with behavior risk assessment, a continuous trust evaluation scheme of power equipment and users is presented in this paper. The scheme is evaluated by the combination of direct trust, indirect trust, and comprehensive trust and adds the penalty reward factor and time attenuation function to improve the reliability of the results. In addition, this paper will quantify the risk of the behavior of power equipment and users and regard it as a factor affecting the degree of trust, so as to achieve continuous trust evaluation of equipment and users.


Author(s):  
Audrey NANGUE ◽  
◽  
Elie FUTE TAGNE ◽  
Emmanuel TONYE

The success of the mission assigned to a Wireless Sensor Network (WSN) depends heavily on the cooperation between the nodes of this network. Indeed, given the vulnerability of wireless sensor networks to attack, some entities may engage in malicious behavior aimed at undermining the proper functioning of the network. As a result, the selection of reliable nodes for task execution becomes a necessity for the network. To improve the cooperation and security of wireless sensor networks, the use of Trust Management Systems (TMS) is increasingly recommended due to their low resource consumption. The various existing trust management systems differ in their methods of estimating trust value. The existing ones are very rigid and not very accurate. In this paper, we propose a robust and accurate method (RATES) to compute direct and indirect trust between the network nodes. In RATES model, to compute the direct trust, we improve the Bayesian formula by applying the chaining of trust values, a local reward, a local penalty and a flexible global penalty based on the variation of successful interactions, failures and misbehaviors frequency. RATES thus manages to obtain a direct trust value that is accurate and representative of the node behavior in the network. In addition, we introduce the establishment of a simple confidence interval to filter out biased recommendations sent by malicious nodes to disrupt the estimation of a node's indirect trust. Mathematical theoretical analysis and evaluation of the simulation results show the best performance of our approach for detecting on-off attacks, bad-mouthing attacks and persistent attacks compared to the other existing approaches.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1496
Author(s):  
Lilei Lu ◽  
Yuyu Yuan ◽  
Xu Chen ◽  
Zhaohui Li

Recommendation system plays an indispensable role in helping users make decisions in different application scenarios. The issue about how to improve the accuracy of a recommendation system has gained widespread concern in both academic and industry fields. To solve this problem, many models have been proposed, but most of them usually focus on a single perspective. Different from the existing work, we propose a hybrid recommendation method based on the users’ social trust network in this study. The proposed method has several advantages over conventional recommendation solutions. First, it offers a reliable two-step way of determining reference users by employing direct trust between users in the social trust network and setting a similarity threshold. Second, it improves the traditional collaborative filtering (CF) method based on a Pearson Correlation Coefficient (PCC) to reduce extreme values in prediction. Third, it introduces a personalized local social influence (LSI) factor into the improved CF method to further enhance the prediction accuracy. Seventy-one groups of random experiments based on the real dataset Epinions in social networks verify the proposed method. The experimental results demonstrate its feasibility, effectiveness, and accuracy in improving recommendation performance.


Vehicular Ad-hoc Networks (VANETs) are gaining rapid momentum with the increasing number of vehicles on the road. VANETs are ad-hoc networks where vehicles exchange information about the traffic, road conditions to each other or to the road-side infrastructures. VANETs are characterized by high mobility and dynamic topology changes due to the high-speed vehicles in the network. These characteristics pose security challenges as vehicles can be conceded. It is critical to address security for the sake of protecting private data of vehicle and to avoid flooding of false data which defeats the purpose of VANETs. Sybil attack is one of the attacks where a vehicle fakes multiple vehicle identity to compromise the whole network. In this work, a direct trust manager is introduced which derives the trust value of each of its neighbor nodes at a regular interval of time. If the trust value is deviated, it confirms sybil attack. The proposed system is compared with the existing system to prove improved sybil attack detection ratio, thus providing better security. NS2 environment is used to prove the simulation results. The experimental results show that the attack detection ratio of SAD-V-DTC is 5 times better than that of the existing system. The packet delivery ratio shows an improvement of 27.27% while the false positive shows a good increase of 65.80% than the existing system.


Author(s):  
Elham Parhizkar ◽  
Mohammad Hossein Nikravan ◽  
Robert C. Holte ◽  
Sandra Zilles

To assess the trustworthiness of an agent in a multi-agent system, one often combines two types of trust information: direct trust information derived from one's own interactions with that agent, and indirect trust information based on advice from other agents. This paper provides the first systematic study on when it is beneficial to combine these two types of trust as opposed to relying on only one of them. Our large-scale experimental study shows that strong methods for computing indirect trust make direct trust redundant in a surprisingly wide variety of scenarios. Further, a new method for the combination of the two trust types is proposed that, in the remaining scenarios, outperforms the ones known from the literature.


Sign in / Sign up

Export Citation Format

Share Document