Research on Improved Extended Proportional Navigation Guidance

2013 ◽  
Vol 347-350 ◽  
pp. 980-984
Author(s):  
De Long Feng ◽  
Suo Chang Yang ◽  
Yun Zhi Yao ◽  
Ying Xi Liu

This paper proposed an improved method on the basis of the extended proportional guidance law. The method solved the weak observability problem of system sate in guided missile attacking maneuvering target. It is simple in form and easy for engineering implementation. This paper set up relative motion model and the observability theory indexes. The improved propotional guidance law is simulated using the MATLAB language. The simulation results show that the method is reasonable, effective and improving the observability.

Author(s):  
Runle Du ◽  
Xinguang Zou ◽  
Di Zhou ◽  
Jiaqi Liu

This paper addresses a pursuer tracking problem where the pursuer's acceleration is given by a proportional navigation (PN) guidance law with a time-varying navigation ratio which varies with the relative range between the pursuer and its target. Based on a motion model that exactly describes the relative motion and the PN guidance law, a novel filter for tracking such a pursuer is designed using interactive multiple model (IMM) algorithm and unscented Kalman filtering (UKF) technique. This filter is able to accurately estimate the relative range, relative velocity, and the acceleration of pursuer even if the pursuer adopts a PN guidance law with time-varying navigation ratio. The proposed tracking method is evaluated in extensive Monte Carlo simulations. It is shown that accurate estimation results have been obtained, and the model probabilities in the IMM UKF filter are consistent with real situations.


Author(s):  
Ke-Bo Li ◽  
Wen-Shan Su ◽  
Lei Chen

The interception of high-speed target with an arbitrary maneuvering acceleration causes serious troubles to the guidance and control system design of airborne missile. A novel guidance law based on the classical differential geometry curve theory was proposed not long ago. Although it is believed and numerically demonstrated that this differential geometric guidance law (DGGL) is superior to the classical pure proportional navigation (PPN) in intercepting high-speed targets, its performance has not been thoroughly analyzed. In this paper, using the Lyapunov-like approach, the performance of DGGL against the high-speed target with an arbitrary but upper-bounded maneuvering acceleration is well studied. The upper bounds of the LOS rate and commanded acceleration of DGGL are obtained, and conditions that guarantee the capture of this type of maneuvering target are also presented. The nonlinear relative dynamics between the missile and target is taken into full account. Finally, the proposed theoretical findings are demonstrated by numerical simulation examples.


2019 ◽  
Vol 123 (1262) ◽  
pp. 464-483
Author(s):  
X.L. Ai ◽  
L.L. Wang ◽  
Y.C. Shen

ABSTRACTThis study focuses on the co-operative salvo attack problem of multiple missiles against a stationary target under jointly connected switching topologies subject to time-varying communication delays. By carefully exploring certain features of the typical pure proportional navigation guidance law, a two-stage distributed guidance scheme is proposed without any information on time-to-go in this study to realise the simultaneous attack of multiple missiles. In the first guidance stage, a co-operative guidance law is proposed using local neighbouring communications only to achieve consensus on range-to-go and heading error to provide favourable initial conditions for the latter phase, in which switching topologies and time-varying communication delays are taken into account when obtaining sufficient conditions of consensus in terms of linear matrix inequalities. Then, missiles disconnect from each other and are guided individually by the typical pure proportional navigation guidance law with the same navigation gain to realise salvo attack in the second guidance phase. Finally, numerical simulations are carried out to clearly validate the theoretical results.


Author(s):  
Di Zhou ◽  
Sheng Sun ◽  
Jing Yang Zhou ◽  
Kok Lay Teo

Based on the discrete form of the target-missile relative motion equations in plane, a discrete sliding-mode guidance (DSMG) law is proposed. All previous missile seeker's measurements are used in the design of the DSMG law to estimate the target acceleration such that noises in the seeker's measurements are effectively being smoothened. It is proved that the proposed DSMG law is finite time convergent. Quasi sliding-mode bands of the DSMG law are discussed, and the formula for calculating the terminal miss distances of the missile under the DSMG law are presented. Simulation results from a space interception process verify the effectiveness of the proposed method.


2005 ◽  
Vol 29 (2) ◽  
pp. 195-209
Author(s):  
Dany Dionne ◽  
Hannah Michalska

A new adaptive proportional navigation law for interception of a maneuvering target is presented. The approach employs a bank of guidance laws and an on-line governor to select the guidance law in effect at each time instant. The members of the bank are the proportional navigation law and a companion law suitable for a target moving with a constant acceleration. The governor is a hierarchical decision rule which uses the outputs from a maneuver detector and the available a-priori information about the expected number of evasive maneuvers. Simulation results demonstrate that the adaptive approach leads to a reduction in the miss distance as compared with cases where only a single non-adaptive guidance law is available.


Sign in / Sign up

Export Citation Format

Share Document