Study on the Improvement of Genetic Algorithm by Using Vehicle Routing Problem

2013 ◽  
Vol 365-366 ◽  
pp. 194-198 ◽  
Author(s):  
Mei Ni Guo

mprove the existing genetic algorithm, make the vehicle path planning problem solving can be higher quality and faster solution. The mathematic model for study of VRP with genetic algorithms was established. An improved genetic algorithm was proposed, which consist of a new method of initial population and partheno genetic algorithm revolution operation.Exploited Computer Aided Platform and Validated VRP by simulation software. Compared this improved genetic algorithm with the existing genetic algorithm and approximation algorithms through an example, convergence rate Much faster and the Optimal results from 117.0km Reduced to 107.8km,proved that this article improved genetic algorithm can be faster to reach an optimal solution. The results showed that the improved GA can keep the variety of cross and accelerate the search speed.

2017 ◽  
Vol 21 ◽  
pp. 255-262 ◽  
Author(s):  
Mazin Abed Mohammed ◽  
Mohd Khanapi Abd Ghani ◽  
Raed Ibraheem Hamed ◽  
Salama A. Mostafa ◽  
Mohd Sharifuddin Ahmad ◽  
...  

2013 ◽  
Vol 791-793 ◽  
pp. 1409-1414 ◽  
Author(s):  
Meng Wang ◽  
Kai Liu ◽  
Zhu Long Jiang

The battery quick exchange mode is an effective solution to resolve the battery charging problem of electric vehicle. For the electric vehicle battery distribution network with the battery quick exchange mode, the distribution model and algorithm are researched; the general mathematical model to take delivery of the vehicle routing problem with time window (VRP-SDPTW) is established. By analyzing the relationship between the main variables, structure priority function of the initial population, a new front crossover operator, swap mutation operator and reverse mutation operator are designed, and an improved genetic algorithm solving VRP-SDPTW is constructed. The algorithm could overcome the traditional genetic algorithm premature convergence defects. The example shows that the improved genetic algorithm can be effective in the short period of time to obtain the satisfactory solution of the VRP-SDPTW.


Author(s):  
Morteza Madhkhan ◽  
Mohammad Reza Baradaran

Genetic Algorithm (GA) is one of the most widely used optimization algorithms. This algorithm consists of five stages, namely population generation, crossover, mutation, evaluation, and selection. This study presents a modified version of GA called Improved Genetic Algorithm (IGA) for the optimization of steel frame designs. In the IGA, the rate of convergence to the optimal solution is increased by splitting the population generation process to two stages. In the first stage, the initial population is generated by random selection of members from among AISC W-shapes. The generated population is then evaluated in another stage, where the member that does not satisfy the design constraints are replaced with stronger members with larger cross sectional area. This process continues until all design constraints are satisfied. Through this process, the initial population will be improved intelligently so that the design constraints fall within the allowed range. For performance evaluation and comparison, the method was used to design and optimize 10-story and 24-story frames based on the LRFD method as per AISC regulations with the finite element method used for frame analysis. Structural analysis, design, and optimization were performed using a program written with MATLAB programming language. The results show that using the proposed method (IGA) for frame optimization reduces the volume of computations and increases the rate of convergence, thus allowing access to frame designs with near-optimal weights in only a few iterations. Using the IGA also limits the search space to the area of acceptable solutions.


2021 ◽  
Vol 22 (1) ◽  
pp. 1-17
Author(s):  
Muhammad Faisal Ibrahim ◽  
M.M Putri ◽  
D Farista ◽  
Dana Marsetiya Utama

Vehicle Routing Problem (VRP) has many applications in real systems, especially in distribution and transportation. The optimal determination of vehicle routes impacts increasing economic interests. This research aims to find the optimal solution in Vehicle Routing Problem Pick-up and Delivery with Time Windows (VRPPDTW).  Targets of this problem included reducing distance travel and penalties. Three penalties that were considered are a capacity penalty, opening time capacity, and closing time capacity. An improved genetic algorithm was developed and used to determine the vehicle route.  There were one main depot and 42 customers. This research raised the problem of a shipping and logistics company. Analysis of the results showed that the proposed route obtained from improved genetic algorithms (GA) was better than the existing route and previous algorithm. Besides, this research was carried out an analysis on the effect of the number of iterations on distance traveled, the number of penalties, and the fitness value. This algorithm could be applied in VRPPDTW and produces an optimal solution.


2018 ◽  
Vol 48 (3) ◽  
pp. 151-156
Author(s):  
S. WU ◽  
C. CHEN

In order to solve the shortcomings of the traditional genetic algorithm in solving the problem of logistics distribution path, a modified genetic algorithm is proposed to solve the Vehicle Routing Problem with Time Windows (VRPTW) under the condition of vehicle load and time window. In the crossover process, the best genes can be preserved to reduce the inferior individuals resulting from the crossover, thus improving the convergence speed of the algorithm. A mutation operation is designed to ensure the population diversity of the algorithm, reduce the generation of infeasible solutions, and improve the global search ability of the algorithm. The algorithm is implemented on Matlab 2016a. The example shows that the improved genetic algorithm reduces the transportation cost by about 10% compared with the traditional genetic algorithm and can jump out of the local convergence and obtain the optimal solution, thus providing a more reasonable vehicle route.


2020 ◽  
Vol 12 (19) ◽  
pp. 7934
Author(s):  
Anqi Zhu ◽  
Bei Bian ◽  
Yiping Jiang ◽  
Jiaxiang Hu

Agriproducts have the characteristics of short lifespan and quality decay due to the maturity factor. With the development of e-commerce, high timelines and quality have become a new pursuit for agriproduct online retailing. To satisfy the new demands of customers, reducing the time from receiving orders to distribution and improving agriproduct quality are significantly needed advancements. In this study, we focus on the joint optimization of the fulfillment of online tomato orders that integrates picking and distribution simultaneously within the context of the farm-to-door model. A tomato maturity model with a firmness indicator is proposed firstly. Then, we incorporate the tomato maturity model function into the integrated picking and distribution schedule and formulate a multiple-vehicle routing problem with time windows. Next, to solve the model, an improved genetic algorithm (the sweep-adaptive genetic algorithm, S-AGA) is addressed. Finally, we prove the validity of the proposed model and the superiority of S-AGA with different numerical experiments. The results show that significant improvements are obtained in the overall tomato supply chain efficiency and quality. For instance, tomato quality and customer satisfaction increased by 5% when considering the joint optimization, and the order processing speed increased over 90% compared with traditional GA. This study could provide scientific tomato picking and distribution scheduling to satisfy the multiple requirements of consumers and improve agricultural and logistics sustainability.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


2014 ◽  
Vol 602-605 ◽  
pp. 1332-1335
Author(s):  
Hong Wei Lv

With full rotation articulated ABB-IBR140-M2000 robot with six degrees of freedom used as welding robot, the exploring of efficient complete coverage of welding position flock is an important way of improving the performance of welding robot. Making use of improved genetic algorithm, in which the best father generation is saved and using ordered cross and reverse ordered mutation to constitute filial generation, and this method makes sure that the algorithms is convergent. The complete coverage of welding position optimization mathematic model whose objective is the minimum distance is established, making use of the improved genetic algorithm to solve the problem, an example is analyzed in detail, and the result shows that the algorithms is convergent and efficient.


Author(s):  
Sushrut Kumar ◽  
Priyam Gupta ◽  
Raj Kumar Singh

Abstract Leading Edge Slats are popularly being put into practice due to their capability to provide a significant increase in the lift generated by the wing airfoil and decrease in the stall. Consequently, their optimum design is critical for increased fuel efficiency and minimized environmental impact. This paper attempts to develop and optimize the Leading-Edge Slat geometry and its orientation with respect to airfoil using Genetic Algorithm. The class of Genetic Algorithm implemented was Invasive Weed Optimization as it showed significant potential in converging design to an optimal solution. For the study, Clark Y was taken as test airfoil. Slats being aerodynamic devices require smooth contoured surfaces without any sharp deformities and accordingly Bézier airfoil parameterization method was used. The design process was initiated by producing an initial population of various profiles (chromosomes). These chromosomes are composed of genes which define and control the shape and orientation of the slat. Control points, Airfoil-Slat offset and relative chord angle were taken as genes for the framework and different profiles were acquired by randomly modifying the genes within a decided design space. To compare individual chromosomes and to evaluate their feasibility, the fitness function was determined using Computational Fluid Dynamics simulations conducted on OpenFOAM. The lift force at a constant angle of attack (AOA) was taken as fitness value. It was assigned to each chromosome and the process was then repeated in a loop for different profiles and the fittest wing slat arrangement was obtained which had an increase in CL by 78% and the stall angle improved to 22°. The framework was found capable of optimizing multi-element airfoil arrangements.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zheng-kun Zhang ◽  
Chang-feng Zhu ◽  
Qing-rong Wang ◽  
Jia-shan Yuan

This paper focuses on the discrete robustness optimization of emergency transportation network with the consideration of timeliness and decision behavior of decision-maker under the limited rationality. Based on a situation that the nearer to disaster area, the higher probability of time delay, prospect theory is specially introduced to reflect the subjective decision behavior of decision-maker. Then, a discrete robustness optimization model is proposed with the purpose of the better timeliness and robustness. The model is based on the emergency transportation network with multistorage centers and multidisaster points. In order to obtain the optimal solution, an improved genetic algorithm is designed by introducing a bidirectional search strategy based on a newfangled path cluster to obtain specific paths that connect each storage centers and each disaster points. Finally, a case study is exhibited to demonstrate the reasonability of the model, theory, and algorithm. The result shows that the path cluster with the better timeliness and robustness can be well obtained by using the prospect theory and improved genetic algorithm. The analysis especially reveals that the robustness is correspondent to the risk aversion in prospect theory.


Sign in / Sign up

Export Citation Format

Share Document